簡易檢索 / 詳目顯示

研究生: 陳鈺雯
Chen, Yu-Wen
論文名稱: 製備具螢光標記之海藻酸鈉/ε-聚賴氨酸奈米粒子應用於鼻腔藥物遞送
Preparation of Fluorescence-labeled Sodium Alginate/ε-Polylysine Nanoparticles for Nasal Drug Delivery
指導教授: 吳文中
Wu, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 129
中文關鍵詞: 離子交聯靜電自組裝奈米粒子海藻酸鈉聚賴氨酸鼻腔遞送
外文關鍵詞: ionic crosslinking, self-assembled nanoparticles, sodium alginate, polylysine, intranasal delivery
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一套以海藻酸鈉(Sodium Alginate, SA)與ε-聚賴氨酸(ε-Polylysine, PL)靜電自組裝形成之奈米粒子(SAPL)系統,作為Diazoxide lithium salt(DZX-Li)之鼻腔藥物遞送載體,藉由經鼻給藥可避開血腦屏障限制,提升藥物進入中樞神經系統的效率,並進一步引入螢光標記分子 Rhodamine 6G hydrazide(R6G),以利後續於細胞或組織內部進行定位與追蹤。
    初期製程以簡單混合法進行調製,惟於高濃度條件下易導致粒徑增大與聚集不均,故進一步導入MUCU製程(混合、超音波震盪、離心、再震盪)進行優化。結果顯示,未加入鈣離子時,MUCU法可將粒徑穩定控制於250 nm左右,並提升分散穩定性;若加入Ca²⁺進行離子交聯則可於簡單混合條件下製得穩定粒子。
    藉由調整SA/PL比例(1.2–14.4)與Ca²⁺濃度(0.23–0.83 mM),本研究選用SA/PL 重量比為6與9.6、Ca²⁺ 濃度為0與0.34 mM兩條件作為代表樣品,用以比較鈣離子對SAPL載體性質之影響。粒徑與Zeta電位分析顯示,載藥後SAPL奈米粒子仍維持200–300 nm大小與−55至−74 mV負電位,具良好粒子穩定性。於0.35%投藥濃度下,SAPL6-0.26 mM Ca與SAPL13.2-0.51 mM Ca之包覆效率分別為4.38%與4.56%,最高負載量達30.48%,顯示Ca²⁺交聯有助穩定藥物並提升包覆效率。
    釋放實驗結果顯示,SAPL與SAPL-Ca奈米粒子於PBS、模擬腦脊液(CSF)與模擬鼻液(SNF)中,48小時內皆可達80%以上之累積釋放,且SAPL9.6-0.34 mM Ca具明顯緩釋效果,推測與Ca²⁺於SA鏈段形成蛋盒結構有關。細胞毒性評估顯示SAPL與SAPL-Ca奈米粒子於180 μg/mL以下濃度對INS-1與RPMI-2650細胞皆具良好相容性,細胞存活率高於80%。GSIS實驗進一步證實SAPL6與SAPL9.6-0.34 mM Ca載藥系統可有效遞送DZX-Li至INS-1細胞,且藥效未因包覆而降低。
    最後以RPMI-2650細胞建立Transwell氣液介面鼻上皮模型進行藥物滲透實驗,結果顯示SAPL6與SAPL9.6-0.34 mM Ca載藥奈米粒子之滲透率分別為2.79 × 10-5 cm/s 與3.16 × 10-5 cm/s ,與游離Li -DZX之2.48 × 10-5 cm/s相近,並無顯著差異,顯示SAPL載體不影響藥物穿透效率,且此數值高於游離DZX之1.1 × 10-5 cm/s以及文獻中常見之標準模型如 Calu-3 或 RPMI 2650 細胞中transcellular 標記物Propranolol 所呈現之穿透率(約14.4–16.1*10⁻⁶ cm/s),證實此載藥系統為高度通透性,具鼻腦遞送潛力。
    綜合而言,本研究建立之SAPL奈米粒子遞藥系統具備製程簡便、粒徑穩定、藥效維持、緩釋可控、細胞相容性佳與穿透效率良好等優勢,為Diazoxide或其他中樞神經治療藥物開發鼻腔遞送策略提供一具潛力之平台。

    This study developed a nasal drug delivery system using sodium alginate (SA) and ε-polylysine (PL) to form SAPL nanoparticles via electrostatic self-assembly for encapsulating diazoxide lithium salt (Li-DZX). Rhodamine 6G hydrazide (R6G) was conjugated for fluorescence tracking. A MUCU process (mixing, ultrasonication, centrifugation, re-ultrasonication) improved particle stability (~250 nm). Formulations with and without calcium (e.g., SAPL6, SAPL9.6-0.34 mM Ca) showed good colloidal stability (−55 to −74 mV) and achieved up to 30.48% drug loading. In vitro release exceeded 80% in 48 h, with Ca²⁺-crosslinked particles showing sustained release.
    Cytotoxicity and GSIS assays confirmed biocompatibility and retained drug activity. Transwell tests demonstrated comparable permeability to free drug. This SAPL system shows promise for intranasal delivery of CNS drugs.

    摘要 i Extended Abstract iii 總目錄xiv 圖目錄xviii 表目錄xxii 公式目錄xxiii 第1章 緒論1 1.1 前言1 1.2 研究動機2 第2章 文獻回顧3 2.1 藥物傳遞系統3 2.2 聚電解質藥物載體7 2.2.1 聚電解質複合物的結構分類11 2.2.2 聚電解質複合物的形成機制11 2.2.3 海藻酸鈉/聚賴氨酸13 2.3 鼻腦藥物輸送14 2.3.1 嗅覺神經途徑(Olfactory nerve pathway)15 2.3.2 三叉神經途徑(Trigeminal nerve pathway)15 2.3.3 間接途徑及血腦屏障(Indirect pathway & Blood-brain barrier)15 2.3.4 黏膜黏附型載體與黏膜滲透型載體17 2.4 體外鼻腔模型(In vitro nasal epithelial models)19 2.4.1 Transwell23 2.4.2 跨上皮電阻TEER(transepithelial electrical resistance)測量技術25 2.5 Diazoxide的藥理機轉與KATP通道調控26 第3章 實驗28 3.1 實驗藥品與材料28 3.2 螢光單體合成(SA-R6G)30 3.2.1 R6G激發波長確定與檢量線建立32 3.3 SAPL奈米粒子製備33 3.3.1 SAPL33 3.3.2 SAPL-Ca35 3.4 藥物包覆37 3.4.1 Diazoxide-Li salt檢量線建立37 3.4.2 Drug-loaded SAPL39 3.4.3 Drug-loaded SAPL-Ca40 3.5 藥物釋放42 3.5.1 模擬腦脊液製備42 3.5.2 模擬鼻液製備42 3.6 Glucose-Stimulated Insulin Secretion(GSIS)43 3.6.1 細胞培養(INS-1)43 3.6.2 細胞繼代43 3.6.3 胰島素濃度測試43 3.6.4 蛋白質濃度測試(DC Protein Assay)46 3.7 Transwell鼻上皮屏障模型建立與 TEER 測量47 3.7.1 細胞培養與凍存(RPMI-2650)47 3.7.2 藥物滲透實驗49 3.8 細胞毒性測試(MTT Assay)50 3.8.1 細胞下盤50 3.8.2 細胞處理與測定50 3.9 儀器原理與鑑定52 3.9.1 Nuclear Magnetic Resonance (NMR)52 3.9.2 Ultraviolet-Visible Spectroscopy (UV-Vis)52 3.9.3 Photoluminescence Spectroscopy (PL)52 3.9.4 Attenuated Total Reflection (ATR-FTIR)53 3.9.5 Dynamic Light Scattering (DLS)53 3.9.6 Scanning Electron Microscopy (SEM)53 3.9.7 Transmission electron microscopy (TEM)54 3.9.8 Enzyme-Linked Immunosorbent Assay (ELISA) Reader54 3.9.9 Transepithelial Electrical Resistance (TEER) 測量儀(EVOM2)54 第4章 結果與討論56 4.1 SA-R6G合成分析56 4.1.1 傅立葉轉換紅外光譜(IR spectrum)58 4.1.2 NMR60 4.2 SAPL奈米粒子製備與性質分析61 4.2.1 無鈣奈米粒子之粒徑分析61 4.2.2 含鈣奈米粒子之粒徑分析67 4.2.3 載藥奈米粒子之粒徑與電位分析70 4.3 SAPL奈米粒子形態觀察76 4.3.1 無鈣離子奈米粒子外觀76 4.3.2 含鈣離子奈米粒子外觀76 4.3.3 包藥後無鈣離子奈米粒子外觀80 4.3.4 包藥後含鈣離子奈米粒子外觀83 4.4 奈米粒子包覆藥物之包覆效率與負載量85 4.5 藥物釋放88 4.6 細胞實驗92 4.6.1 GSIS(Glucose-Stimulated Insulin Secretion)分析92 4.6.2 Transwell94 4.6.3 MTT95 第5章 結論98 參考文獻100

    1. Bastide, M.F., et al., Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Progress in neurobiology, 2015. 132: p. 96-168.
    2. Cenci, M.A. and M. Lundblad, Post‐versus presynaptic plasticity in L‐DOPA‐induced dyskinesia. Journal of neurochemistry, 2006. 99(2): p. 381-392.
    3. Ashcroft, F.M., ATP-sensitive potassium channelopathies: focus on insulin secretion. The Journal of clinical investigation, 2005. 115(8): p. 2047-2058.
    4. Maneuf, Y.P., et al., Modulation of GABA transmission by diazoxide and cromakalim in the globus pallidus: implications for the treatment of Parkinson's disease. Experimental neurology, 1996. 139(1): p. 12-16.
    5. Virgili, N., et al., KATP channel opener diazoxide prevents neurodegeneration: A new mechanism of action via antioxidative pathway activation. PloS one, 2013. 8(9): p. e75189.
    6. Correia, S.C., et al., Mitochondrial preconditioning: a potential neuroprotective strategy. Frontiers in aging neuroscience, 2010. 2: p. 138.
    7. Pardridge, W.M., Drug transport across the blood–brain barrier. Journal of cerebral blood flow & metabolism, 2012. 32(11): p. 1959-1972.
    8. Illum, L., Transport of drugs from the nasal cavity to the central nervous system. European journal of pharmaceutical sciences, 2000. 11(1): p. 1-18.
    9. Strebhardt, K. and A. Ullrich, Paul Ehrlich's magic bullet concept: 100 years of progress. Nature reviews cancer, 2008. 8(6): p. 473-480.
    10. Wilczewska, A.Z., et al., Nanoparticles as drug delivery systems. Pharmacological reports, 2012. 64(5): p. 1020-1037.
    11. Kayser, O., A. Lemke, and N. Hernandez-Trejo, The impact of nanobiotechnology on the development of new drug delivery systems. Current pharmaceutical biotechnology, 2005. 6(1): p. 3-5.
    12. Liu, D., et al., The smart drug delivery system and its clinical potential. Theranostics, 2016. 6(9): p. 1306.
    13. Illum, L., Nasal drug delivery—possibilities, problems and solutions. Journal of controlled release, 2003. 87(1-3): p. 187-198.
    14. Hosseini, S. Smart drug delivery systems: Concepts and clinical applications. in Proceedings of the Second International Conference on Applications of Advanced Technologies (ICAAT), Queretaro, Mexico. 2021.
    15. Mao, H.-Q., et al., Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of controlled release, 2001. 70(3): p. 399-421.
    16. Liu, J., et al., Magnetically sensitive alginate-templated polyelectrolyte multilayer microcapsules for controlled release of doxorubicin. The journal of physical chemistry C, 2010. 114(17): p. 7673-7679.
    17. Liu, P. and X. Zhao, Facile preparation of well‐defined near‐monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: A suitable technique for drug delivery systems. Biotechnology journal, 2013. 8(7): p. 847-854.
    18. Cheng, Y., et al., Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. ACS Applied materials & interfaces, 2012. 4(10): p. 5325-5332.
    19. Hu, Y., et al., Hollow chitosan/poly (acrylic acid) nanospheres as drug carriers. Biomacromolecules, 2007. 8(4): p. 1069-1076.
    20. Meka, V.S., et al., A comprehensive review on polyelectrolyte complexes. Drug discovery today, 2017. 22(11): p. 1697-1706.
    21. Costa, M.J., et al., Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food hydrocolloids, 2018. 81: p. 442-448.
    22. Feng, Y., et al., An update on the role of nanovehicles in nose-to-brain drug delivery. Drug discovery today, 2018. 23(5): p. 1079-1088.
    23. Khan, A.R., et al., Progress in brain targeting drug delivery system by nasal route. Journal of controlled release, 2017. 268: p. 364-389.
    24. Daneman, R. and A. Prat, The blood–brain barrier. Cold spring harbor perspectives in biology, 2015. 7(1): p. a020412.
    25. Kozlovskaya, L., M. Abou-Kaoud, and D. Stepensky, Quantitative analysis of drug delivery to the brain via nasal route. Journal of controlled release, 2014. 189: p. 133-140.
    26. Chaturvedi, M., M. Kumar, and K. Pathak, A review on mucoadhesive polymer used in nasal drug delivery system. Journal of advanced pharmaceutical technology & research, 2011. 2(4): p. 215-222.
    27. Ugwoke, M.I., et al., Bioavailability of apomorphine following intranasal administration of mucoadhesive drug delivery systems in rabbits. European journal of pharmaceutical sciences, 1999. 9(2): p. 213-219.
    28. Schuster, B.S., et al., Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials, 2013. 34(13): p. 3439-3446.
    29. de Sousa, I.P., et al., Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. European journal of pharmaceutics and biopharmaceutics, 2015. 97: p. 273-279.
    30. Lai, S.K., Y.-Y. Wang, and J. Hanes, Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced drug delivery reviews, 2009. 61(2): p. 158-171.
    31. Werner, U. and T. Kissel, In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharmaceutical research, 1996. 13: p. 978-988.
    32. Schmidt, M.C., et al., In vitro cell models to study nasal mucosal permeability and metabolism. Advanced drug delivery reviews, 1998. 29(1-2): p. 51-79.
    33. Bai, S., et al., Evaluation of human nasal RPMI 2650 cells grown at an air–liquid interface as a model for nasal drug transport studies. Journal of pharmaceutical sciences, 2008. 97(3): p. 1165-1178.
    34. Wengst, A. and S. Reichl, RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. European journal of pharmaceutics and biopharmaceutics, 2010. 74(2): p. 290-297.
    35. Sibinovska, N., S. Žakelj, and K. Kristan, Suitability of RPMI 2650 cell models for nasal drug permeability prediction. European journal of pharmaceutics and biopharmaceutics, 2019. 145: p. 85-95.
    36. Hatherell, K., et al., Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. Journal of neuroscience methods, 2011. 199(2): p. 223-229.
    37. Ghaffarian, R. and S. Muro, Models and methods to evaluate transport of drug delivery systems across cellular barriers. Journal of visualized experiments: JoVE, 2013(80): p. 50638.
    38. Srinivasan, B., et al., TEER measurement techniques for in vitro barrier model systems. Journal of laboratory automation, 2015. 20(2): p. 107-126.
    39. Nazari, H., et al., Advances in TEER measurements of biological barriers in microphysiological systems. Biosensors and bioelectronics, 2023. 234: p. 115355.
    40. Nichols, C.G., KATP channels as molecular sensors of cellular metabolism. Nature, 2006. 440(7083): p. 470-476.
    41. Yang, J.-S., Y.-J. Xie, and W. He, Research progress on chemical modification of alginate: A review. Carbohydrate polymers, 2011. 84(1): p. 33-39.
    42. Yuan, J., et al., Preparation of self-assembled nanoparticles of ε-polylysine-sodium alginate: a sustained-release carrier for antigen delivery. Colloids and surfaces b: biointerfaces, 2018. 171: p. 406-412.
    43. Rajaonarivony, M., et al., Development of a new drug carrier made from alginate. Journal of pharmaceutical sciences, 1993. 82(9): p. 912-917.
    44. Mohanraj, K., S. Sethuraman, and U.M. Krishnan, Development of poly (butylene succinate) microspheres for delivery of levodopa in the treatment of Parkinson's disease. Journal of biomedical materials research part B: applied biomaterials, 2013. 101(5): p. 840-847.
    45. Trenkel, M. and R. Scherließ, Nasal powder formulations: In-vitro characterisation of the impact of powders on nasal residence time and sensory effects. Pharmaceutics, 2021. 13(3): p. 385.
    46. Daemi, H. and M. Barikani, Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 2012. 19(6): p. 2023-2028.

    無法下載圖示 校內:2030-08-21公開
    校外:2030-08-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE