| 研究生: |
郭湘鈴 Kuo, Hsiang-Ling |
|---|---|
| 論文名稱: |
探討extracellular vesicles對於癌細胞死亡的潛在影響 Potential role of extracellular vesicles in regulating cancer cell death |
| 指導教授: |
張南山
Chang, Nan-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 含雙色氨酸功能區氧化還原酶(WWOX) 、死亡囊體 、細胞遷移 、Smad4/Hyal-2/WWOX信號 |
| 外文關鍵詞: | WWOX, deathosome, cell migration, Smad4/Hyal-2/WWOX signaling |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
導致癌症死亡主要原因有晚期診斷、預後不良、抗藥性和癌細胞轉移等。在許多惡性轉移的癌細胞中,腫瘤抑制蛋白WWOX表現量常有減少的現象。另外,在我們最近的研究中,發現由溫度所調節的細胞冒泡死亡(bubbling cells death, BCD)發生時,基本上大多的細胞會分泌exosomes-like顆粒並釋放到細胞外。而這些exosomes的功能在目前研究上有很大程度是未知且尚未確定的。於本研究中,將觀察extracellular vesicles (EV)/exosomes如何影響WWOX調節的細胞遷移。首先以UV照射和冷衝擊的方式誘導乳腺癌細胞產生BCD,然後使用高速離心分離培養血清中的exosomes,並將此特定分離的物質稱為deathosome。我們結果發現在deathosome處理後,Wwox+/+小鼠胚胎纖維細胞(MEF)的遷移明顯被阻斷,而Wwox-/- MEF細胞的遷移則對deathosome刺激不敏感。此外,deathosome也不會對Wwox+/+細胞產生毒性,並增加其細胞進入S週期。deathosome在乳癌細胞中增強了Hyal-2、ERK和JNK的表達,顯示其參與的細胞存活機制。但我們在通過螢光共振能量轉移(FRET)顯微鏡成像證實deathosome通過Hyal-2受體的信號Smad4/Hyal-2/WWOX會誘導細胞死亡。總和以上結果,我們發現從乳腺癌細胞4T1-luc在BCD所分離出的deathosome,通過異位的Smad4 / Hyal-2 / WWOX信號誘導細胞死亡。
Cancer death remains one of the leading causes of death due to the late diagnosis, poor prognosis, and frequent occurrence of drug resistance and metastasis. Tumor suppressor WW domain-containing oxidoreductase (WWOX) protein is involved in cancer suppression, but it is frequently deficient in metastatic cancer cells. WWOX participates in the temperature-regulated “bubbling cell death” which involves generation of nitric oxide at low temperatures. Essentially every cell type releases exosome-like particles to the extracellular space during BCD. The function of exosome-like particles is largely unknown. Here, we investigated how extracellular vesicles (EV)/exosomes affect WWOX-regulated cell migration. EV/Exosomes were isolated from breast cancer cell lines treated with UV irradiation/cold shock overnight to induce BCD, followed by isolation using stepwise high speed centrifugation. The isolated material is hereby designated “deathosomes” for their enhanced release during BCD. Migration of Wwox+/+ mouse embryonic fibroblast (MEF) cells was significantly blocked after treating with deathosomes, whereas the migration of Wwox-/- MEF cells were not susceptible to changes upon deathosomes challenge. Wwox-/- MEF cells migrated individually, even under deathosomes treatment. Furthermore, deathosomes did not cause toxicity in the Wwox+/+ MEF cells and increased cell cycle progression into the S phase. Deathosomes upregulated Hyal2, ERK and JNK in 4T1-luc cells. The deathosomes-enhanced Smad/Hyal-2/WWOX complex formation was confirmed by real time tri-molecular FRET (Förster resonance energy transfer) microscopy. In conclusion, we demonstrated that deathosomes isolated from death breast cancer cells 4T1-luc induced cell death via ectopic Smad4/Hyal-2/WWOX signaling.
1. Bednarek, A. K., Laflin, K. J., Daniel, R. L., Liao, Q., Hawkins, K. A., and Aldaz, C. M. (2000) WWOX, a Novel WW Domain-containing Protein Mapping to Human Chromosome 16q23.3–24.1, a Region Frequently Affected in Breast Cancer. Cancer Res. 60, 2140-2145
2. Ried, K., Finnis, M., Hobson, L., Mangelsdorf, M., Dayan, S., Nancarrow, J. K., Woollatt, E., Kremmidiotis, G., Gardner, A., Venter, D., Baker, E., and Richards, R. I. (2000) Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum. Mol. Genet. 9, 1651-1663
3. Chang, N. S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B., and Zevotek, N. (2001) Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J. Biol. Chem. 276, 3361-3370
4. Lokeshwar, V. B., Mirza, S., and Jordan, A. (2014) Targeting hyaluronic acid family for cancer chemoprevention and therapy. Adv. Cancer Res. 123, 35-65
5. Oppermann, U. C., Filling, C., and Jornvall, H. (2001) Forms and functions of human SDR enzymes. Chem. Biol. Interact. 130-132, 699-705
6. Hu, H., Columbus, J., Zhang, Y., Wu, D., Lian, L., Yang, S., Goodwin, J., Luczak, C., Carter, M., Chen, L., James, M., Davis, R., Sudol, M., Rodwell, J., and Herrero, J. J. (2004) A map of WW domain family interactions. Proteomics 4, 643-655
7. Chang, N. S., Schultz, L., Hsu, L. J., Lewis, J., Su, M., and Sze, C. I. (2005) 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene 24, 714-723
8. Su, W. P., Chen, S. H., Chen, S. J., Chou, P. Y., Huang, C. C., and Chang, N. S. (2012) WW Domain-containing oxidoreductase is a potential receptor for sex steroid hormones. in Sex Hormones, ed. Dubey R. K., editor. (Rijeka: InTech; ), 333–351
9. Jin, C., Ge, L., Ding, X., Chen, Y., Zhu, H., Ward, T., Wu, F., Cao, X., Wang, Q., and Yao, X. (2006) PKA-mediated protein phosphorylation regulates ezrin-WWOX interaction. Biochem. Biophys. Res. Commun. 341, 784-791
10. Chang, N. S., Hsu, L. J., Lin, Y. S., Lai, F. J., and Sheu, H. M. (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol. Med. 13, 12-22
11. Aqeilan, R. I., Pekarsky, Y., Herrero, J. J., Palamarchuk, A., Letofsky, J., Druck, T., Trapasso, F., Han, S. Y., Melino, G., Huebner, K., and Croce, C. M. (2004) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc. Natl. Acad. Sci. U. S. A. 101, 4401-4406
12. Aqeilan, R. I., Donati, V., Palamarchuk, A., Trapasso, F., Kaou, M., Pekarsky, Y., Sudol, M., and Croce, C. M. (2005) WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res. 65, 6764-6772
13. Ferguson, B. W., Gao, X., Zelazowski, M. J., Lee, J., Jeter, C. R., Abba, M. C., and Aldaz, C. M. (2013) The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding. BMC Cancer 13, 593
14. Abu-Odeh, M., Salah, Z., Herbel, C., Hofmann, T. G., and Aqeilan, R. I. (2014) WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response. Proc. Natl. Acad. Sci. U. S. A. 111, E4716-4725
15. Tabarki, B., Al Mutairi, F., and Al Hashem, A. (2015) The fragile site WWOX gene and the developing brain. Exp. Biol. Med. (Maywood) 240, 400-402
16. Schrock, M. S., and Huebner, K. (2015) WWOX: a fragile tumor suppressor. Exp. Biol. Med. (Maywood) 240, 296-304
17. Richards, R. I., Choo, A., Lee, C. S., Dayan, S., and O'Keefe, L. (2015) WWOX, the chromosomal fragile site FRA16D spanning gene: its role in metabolism and contribution to cancer. Exp. Biol. Med. (Maywood) 240, 338-344
18. Reuven, N., Shanzer, M., and Shaul, Y. (2015) Tyrosine phosphorylation of WW proteins. Exp. Biol. Med. (Maywood) 240, 375-382
19. Lo, J. Y., Chou, Y. T., Lai, F. J., and Hsu, L. J. (2015) Regulation of cell signaling and apoptosis by tumor suppressor WWOX. Exp. Biol. Med. (Maywood) 240, 383-391
20. Liu, S. Y., Chiang, M. F., and Chen, Y. J. (2015) Role of WW domain proteins WWOX in development, prognosis, and treatment response of glioma. Exp. Biol. Med. (Maywood) 240, 315-323
21. Li, J., Liu, J., Ren, Y., and Liu, P. (2015) Roles of the WWOX in pathogenesis and endocrine therapy of breast cancer. Exp. Biol. Med. (Maywood) 240, 324-328
22. Gao, G., and Smith, D. I. (2015) WWOX, large common fragile site genes, and cancer. Exp. Biol. Med. (Maywood) 240, 285-295
23. Farooq, A. (2015) Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor. Exp. Biol. Med. (Maywood) 240, 361-374
24. Dodson, E. J., Fishbain-Yoskovitz, V., Rotem-Bamberger, S., and Schueler-Furman, O. (2015) Versatile communication strategies among tandem WW domain repeats. Exp. Biol. Med. (Maywood) 240, 351-360
25. Chiang, M. F., Chen, H. H., Chi, C. W., Sze, C. I., Hsu, M. L., Shieh, H. R., Lin, C. P., Tsai, J. T., and Chen, Y. J. (2015) Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells. Exp. Biol. Med. (Maywood) 240, 392-399
26. Chang, Y., Lan, Y. Y., Hsiao, J. R., and Chang, N. S. (2015) Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase. Exp. Biol. Med. (Maywood) 240, 329-337
27. Chang, N. S. (2015) Introduction to a thematic issue for WWOX. Exp. Biol. Med. (Maywood) 240, 281-284
28. Baryla, I., Styczen-Binkowska, E., and Bednarek, A. K. (2015) Alteration of WWOX in human cancer: a clinical view. Exp. Biol. Med. (Maywood) 240, 305-314
29. Abu-Remaileh, M., and Aqeilan, R. I. (2015) The tumor suppressor WW domain-containing oxidoreductase modulates cell metabolism. Exp. Biol. Med. (Maywood) 240, 345-350
30. Schrock, M. S., Batar, B., Lee, J., Druck, T., Ferguson, B., Cho, J. H., Akakpo, K., Hagrass, H., Heerema, N. A., Xia, F., Parvin, J. D., Aldaz, C. M., and Huebner, K. (2017) Wwox–Brca1 interaction: role in DNA repair pathway choice. Oncogene 36, 2215-2227
31. Schrock, M. S., Karras, J. R., Guggenbiller, M. J., Druck, T., Batar, B., and Huebner, K. (2017) Fhit and Wwox loss-associated genome instability: A genome caretaker one-two punch. Advances in Biological Regulation 63, 167-176
32. Schrock, M. S., Batar, B., Lee, J., Druck, T., Ferguson, B., Cho, J. H., Akakpo, K., Hagrass, H., Heerema, N. A., Xia, F., Parvin, J. D., Aldaz, C. M., and Huebner, K. (2017) Wwox-Brca1 interaction: role in DNA repair pathway choice. Oncogene 36, 2215-2227
33. Chen, S. T., Chuang, J. I., Cheng, C. L., Hsu, L. J., and Chang, N. S. (2005) Light-induced retinal damage involves tyrosine 33 phosphorylation, mitochondrial and nuclear translocation of WW domain-containing oxidoreductase in vivo. Neuroscience 130, 397-407
34. Chang, N. S., Doherty, J., and Ensign, A. (2003) JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J. Biol. Chem. 278, 9195-9202
35. Chang, N. S., Doherty, J., Ensign, A., Schultz, L., Hsu, L. J., and Hong, Q. (2005) WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J. Biol. Chem. 280, 43100-43108
36. Mahajan, N. P., Liu, Y., Majumder, S., Warren, M. R., Parker, C. E., Mohler, J. L., Earp, H. S., and Whang, Y. E. (2007) Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 104, 8438-8443
37. Mahajan, N. P., Whang, Y. E., Mohler, J. L., and Earp, H. S. (2005) Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 65, 10514-10523
38. Bouteille, N., Driouch, K., Hage, P. E., Sin, S., Formstecher, E., Camonis, J., Lidereau, R., and Lallemand, F. (2009) Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene 28, 2569-2580
39. Lin, H. P., Chang, J. Y., Lin, S. R., Lee, M. H., Huang, S. S., Hsu, L. J., and Chang, N. S. (2011) Identification of an In Vivo MEK/WOX1 Complex as a Master Switch for Apoptosis in T Cell Leukemia. Genes Cancer 2, 550-562
40. Huang, S. S., Su, W. P., Lin, H. P., Kuo, H. L., Wei, H. L., and Chang, N. S. (2016) Role of WW Domain-containing Oxidoreductase WWOX in Driving T Cell Acute Lymphoblastic Leukemia Maturation. J. Biol. Chem. 291, 17319-17331
41. Gourley, C., Paige, A. J., Taylor, K. J., Ward, C., Kuske, B., Zhang, J., Sun, M., Janczar, S., Harrison, D. J., Muir, M., Smyth, J. F., and Gabra, H. (2009) WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to fibronectin via integrin alpha3. Cancer Res. 69, 4835-4842
42. McAtee, C. O., Barycki, J. J., and Simpson, M. A. (2014) Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv. Cancer Res. 123, 1-34
43. Schmaus, A., Bauer, J., and Sleeman, J. P. (2014) Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev. 33, 1059-1079
44. Chanmee, T., Ontong, P., and Itano, N. (2016) Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett. 375, 20-30
45. Sherman, L. S., Matsumoto, S., Su, W., Srivastava, T., and Back, S. A. (2015) Hyaluronan Synthesis, Catabolism, and Signaling in Neurodegenerative Diseases. Int. J. Cell Biol. 2015, 368584
46. Beech, D. J., Madan, A. K., and Deng, N. (2002) Expression of PH-20 in normal and neoplastic breast tissue. J. Surg. Res. 103, 203-207
47. Stern, R. (2003) Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology 13, 105r-115r
48. Nikitovic, D., Kouvidi, K., Karamanos, N. K., and Tzanakakis, G. N. (2013) The roles of hyaluronan/RHAMM/CD44 and their respective interactions along the insidious pathways of fibrosarcoma progression. Biomed Res Int 2013, 929531
49. Martin, T. A., Harrison, G., Mansel, R. E., and Jiang, W. G. (2003) The role of the CD44/ezrin complex in cancer metastasis. Crit. Rev. Oncol. Hematol. 46, 165-186
50. Hsu, L. J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M. Y., Lai, F. J., Lin, S. R., Lee, M. H., Lo, C. P., Lin, Y. S., Chen, S. T., and Chang, N. S. (2009) Transforming growth factor beta1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J. Biol. Chem. 284, 16049-16059
51. Chang, J. Y., He, R. Y., Lin, H. P., Hsu, L. J., Lai, F. J., Hong, Q., Chen, S. J., and Chang, N. S. (2010) Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. Exp. Biol. Med. (Maywood) 235, 796-804
52. Hsu, L. J., Chiang, M. F., Sze, C. I., Su, W. P., Yap, Y. V., Lee, I. T., Kuo, H. L., and Chang, N. S. (2016) HYAL-2-WWOX-SMAD4 Signaling in Cell Death and Anticancer Response. Frontiers in cell and developmental biology 4, 141
53. Hsu, L. J., Hong, Q., Chen, S. T., Kuo, H. L., Schultz, L., Heath, J., Lin, S. R., Lee, M. H., Li, D. Z., Li, Z. L., Cheng, H. C., Armand, G., and Chang, N. S. (2017) Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. Oncotarget 8, 19137-19155
54. Chen, S.-J., Lin, P.-W., Lin, H.-P., Huang, S.-S., Lai, F.-J., Sheu, H.-M., Hsu, L.-J., and Chang, N.-S. (2015) UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures. Oncotarget 6, 8007-8018
55. Chang, N.-S. (2015) Introduction to a Thematic Issue for WWOX. Exp. Biol. Med. 240, 281-284
56. Chang, N.-S. (2016) Bubbling cell death: A hot air balloon released from the nucleus in the cold. Exp. Biol. Med. 241, 1306-1315
57. Yamaguchi, H., Wyckoff, J., and Condeelis, J. (2005) Cell migration in tumors. Curr. Opin. Cell Biol. 17, 559-564
58. Sahai, E. (2005) Mechanisms of cancer cell invasion. Curr. Opin. Genet. Dev. 15, 87-96
59. Condeelis, J., Singer, R. H., and Segall, J. E. (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695-718
60. Torii, S., Yamamoto, T., Tsuchiya, Y., and Nishida, E. (2006) ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci. 97, 697-702
61. Eger, A., and Mikulits, W. (2005) Models of epithelial–mesenchymal transition. Drug Discov. Today Dis. Models 2, 57-63
62. Thiery, J. P., and Sleeman, J. P. (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131-142
63. Scheel, C., and Weinberg, R. A. (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol. 22, 396-403
64. Puisieux, A., Brabletz, T., and Caramel, J. (2014) Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488-494
65. Sanz-Moreno, V., and Marshall, C. J. (2010) The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr. Opin. Cell Biol. 22, 690-696
66. Ridley, A. J. (2011) Life at the leading edge. Cell 145, 1012-1022
67. Pickup, M. W., Mouw, J. K., and Weaver, V. M. (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO reports 15, 1243-1253
68. Funamoto, S., Meili, R., Lee, S., Parry, L., and Firtel, R. A. (2002) Spatial and Temporal Regulation of 3-Phosphoinositides by PI 3-Kinase and PTEN Mediates Chemotaxis. Cell 109, 611-623
69. Seo, M., Lee, S., Kim, J.-H., Lee, W.-H., Hu, G., Elledge, S. J., and Suk, K. (2014) RNAi-based functional selection identifies novel cell migration determinants dependent on PI3K and AKT pathways. 5, 5217
70. Chang, L., Jones, Y., Ellisman, M. H., Goldstein, L. S., and Karin, M. (2003) JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell 4, 521-533
71. Huang, C., Rajfur, Z., Borchers, C., Schaller, M. D., and Jacobson, K. (2003) JNK phosphorylates paxillin and regulates cell migration. Nature 424, 219-223
72. Huang, C., Jacobson, K., and Schaller, M. D. (2004) MAP kinases and cell migration. J. Cell Sci. 117, 4619-4628
73. Kobayashi, M., Nishita, M., Mishima, T., Ohashi, K., and Mizuno, K. (2006) MAPKAPK‐2‐mediated LIM‐kinase activation is critical for VEGF‐induced actin remodeling and cell migration. EMBO J. 25, 713-726
74. Liu, L., Chen, L., Chung, J., and Huang, S. (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27, 4998-5010
75. Zhou, H., and Huang, S. (2011) Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr. Protein Pept. Sci. 12, 30-42
76. Lai, F. J., Cheng, C. L., Chen, S. T., Wu, C. H., Hsu, L. J., Lee, J. Y., Chao, S. C., Sheen, M. C., Shen, C. L., Chang, N. S., and Sheu, H. M. (2005) WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. Clin. Cancer Res. 11, 5769-5777
77. Liu, C. J., Shen, W. G., Peng, S. Y., Cheng, H. W., Kao, S. Y., Lin, S. C., and Chang, K. W. (2014) miR-134 induces oncogenicity and metastasis in head and neck carcinoma through targeting WWOX gene. Int. J. Cancer 134, 811-821
78. Chou, P.-Y., Lin, S.-R., Lee, M.-H., Hsu, L.-J., Lin, Y.-H., and Chang, N.-S. Evidence for a role of p53, WWOX and TIAF1 as tumor suppression axis. Federation of American Society of Experimental Biology
79. Tkach, M., and Thery, C. (2016) Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 164, 1226-1232
80. Mittelbrunn, M., and Sanchez-Madrid, F. (2012) Intercellular communication: diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell Biol. 13, 328-335
81. Colombo, M., Raposo, G., and Thery, C. (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255-289
82. Cocucci, E., Racchetti, G., and Meldolesi, J. (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43-51
83. Gyorgy, B., Szabo, T. G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., Laszlo, V., Pallinger, E., Pap, E., Kittel, A., Nagy, G., Falus, A., and Buzas, E. I. (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667-2688
84. Ronquist, G., and Brody, I. (1985) The prostasome: its secretion and function in man. Biochim. Biophys. Acta 822, 203-218
85. Dvorak, H. F., Quay, S. C., Orenstein, N. S., Dvorak, A. M., Hahn, P., Bitzer, A. M., and Carvalho, A. C. (1981) Tumor shedding and coagulation. Science 212, 923-924
86. Trams, E. G., Lauter, C. J., Salem, N., Jr., and Heine, U. (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63-70
87. Andre, F., Schartz, N. E., Movassagh, M., Flament, C., Pautier, P., Morice, P., Pomel, C., Lhomme, C., Escudier, B., Le Chevalier, T., Tursz, T., Amigorena, S., Raposo, G., Angevin, E., and Zitvogel, L. (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295-305
88. Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., and Bonnerot, C. (2005) Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17, 879-887
89. Admyre, C., Johansson, S. M., Qazi, K. R., Filen, J. J., Lahesmaa, R., Norman, M., Neve, E. P., Scheynius, A., and Gabrielsson, S. (2007) Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969-1978
90. Bard, M. P., Hegmans, J. P., Hemmes, A., Luider, T. M., Willemsen, R., Severijnen, L. A., van Meerbeeck, J. P., Burgers, S. A., Hoogsteden, H. C., and Lambrecht, B. N. (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am. J. Respir. Cell Mol. Biol. 31, 114-121
91. Thierry, A. R., El Messaoudi, S., Gahan, P. B., Anker, P., and Stroun, M. (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 35, 347-376
92. Grivennikov, S. I., Greten, F. R., and Karin, M. (2010) Immunity, inflammation, and cancer. Cell 140, 883-899
93. Ahmed, K. A., and Xiang, J. (2011) Mechanisms of cellular communication through intercellular protein transfer. J. Cell. Mol. Med. 15, 1458-1473
94. Corrado, C., Raimondo, S., Chiesi, A., Ciccia, F., De Leo, G., and Alessandro, R. (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int. J. Mol. Sci. 14, 5338-5366
95. Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., and Rak, J. (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619-624
96. Gan, H. K., Cvrljevic, A. N., and Johns, T. G. (2013) The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. Febs j 280, 5350-5370
97. Cho, J. A., Park, H., Lim, E. H., and Lee, K. W. (2012) Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int. J. Oncol. 40, 130-138
98. Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., Buchanan, M., Hosein, A. N., Basik, M., and Wrana, J. L. (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542-1556
99. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654-659
100. Sanchez, C. A., Andahur, E. I., Valenzuela, R., Castellon, E. A., Fulla, J. A., Ramos, C. G., and Trivino, J. C. (2016) Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 7, 3993-4008
101. Morello, M., Minciacchi, V. R., de Candia, P., Yang, J., Posadas, E., Kim, H., Griffiths, D., Bhowmick, N., Chung, L. W., Gandellini, P., Freeman, M. R., Demichelis, F., and Di Vizio, D. (2013) Large oncosomes mediate intercellular transfer of functional microRNA. Cell cycle (Georgetown, Tex.) 12, 3526-3536
102. Ono, M., Kosaka, N., Tominaga, N., Yoshioka, Y., Takeshita, F., Takahashi, R. U., Yoshida, M., Tsuda, H., Tamura, K., and Ochiya, T. (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 7, ra63
103. Au Yeung, C. L., Co, N. N., Tsuruga, T., Yeung, T. L., Kwan, S. Y., Leung, C. S., Li, Y., Lu, E. S., Kwan, K., Wong, K. K., Schmandt, R., Lu, K. H., and Mok, S. C. (2016) Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun 7, 11150
104. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S. (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594-600
105. Greening, D. W., Gopal, S. K., Xu, R., Simpson, R. J., and Chen, W. (2015) Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol. 40, 72-81
106. Thakur, B. K., Zhang, H., Becker, A., Matei, I., Huang, Y., Costa-Silva, B., Zheng, Y., Hoshino, A., Brazier, H., Xiang, J., Williams, C., Rodriguez-Barrueco, R., Silva, J. M., Zhang, W., Hearn, S., Elemento, O., Paknejad, N., Manova-Todorova, K., Welte, K., Bromberg, J., Peinado, H., and Lyden, D. (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766-769
107. Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J. M., Dumont-Cole, V. D., Kramer, K., Wexler, L. H., Narendran, A., Schwartz, G. K., Healey, J. H., Sandstrom, P., Jørgen Labori, K., Kure, E. H., Grandgenett, P. M., Hollingsworth, M. A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S. K., Jarnagin, W. R., Brady, M. S., Fodstad, O., Muller, V., Pantel, K., Minn, A. J., Bissell, M. J., Garcia, B. A., Kang, Y., Rajasekhar, V. K., Ghajar, C. M., Matei, I., Peinado, H., Bromberg, J., and Lyden, D. (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527, 329-335
108. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M. J. (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341-345
109. Runz, S., Keller, S., Rupp, C., Stoeck, A., Issa, Y., Koensgen, D., Mustea, A., Sehouli, J., Kristiansen, G., and Altevogt, P. (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol. Oncol. 107, 563-571
110. McAtee, C. O., Barycki, J. J., and Simpson, M. A. (2014) Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv. Cancer Res. 123, 1-34
111. Liu, J., and Lin, A. (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 15, 36-42
112. Friedl, P., and Gilmour, D. (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445-457
113. Rego, S. L., Swamydas, M., Kidiyoor, A., Helms, R., De Piante, A., Lance, A. L., Mukherjee, P., and Dreau, D. (2013) Soluble tumor necrosis factor receptors shed by breast tumor cells inhibit macrophage chemotaxis. J. Interferon Cytokine Res. 33, 672-681
114. Aqeilan, R. I., and Croce, C. M. (2007) WWOX in biological control and tumorigenesis. J. Cell. Physiol. 212, 307-310
115. Srinivasan, R., Zabuawala, T., Huang, H., Zhang, J., Gulati, P., Fernandez, S., Karlo, J. C., Landreth, G. E., Leone, G., and Ostrowski, M. C. (2009) Erk1 and Erk2 Regulate Endothelial Cell Proliferation and Migration during Mouse Embryonic Angiogenesis. PLoS One 4, e8283
116. Lee, J. Y., and Spicer, A. P. (2000) Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr. Opin. Cell Biol. 12, 581-586
117. Stern, R. (2004) Hyaluronan catabolism: a new metabolic pathway. Eur. J. Cell Biol. 83, 317-325
118. Chang, J. Y., Chiang, M. F., Lin, S. R., Lee, M. H., He, H., Chou, P. Y., Chen, S. J., Chen, Y. A., Yang, L. Y., Lai, F. J., Hsieh, C. C., Hsieh, T. H., Sheu, H. M., Sze, C. I., and Chang, N. S. (2012) TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death. Cell Death Dis. 3, e302