| 研究生: |
翁芳瑜 Weng, Fang-Yu |
|---|---|
| 論文名稱: |
利用陽極氧化鋁薄膜過濾及細胞內生物合成奈米金粒子進行微藻拉曼分析 Raman analysis of algal cells by filtration with anodic aluminum oxide membrane and intercellulary biosynthesized gold nanoparticles |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 微藻 、陽極氧化鋁薄膜 、拉曼分析 、過濾 、拉曼增顯 、金粒子 |
| 外文關鍵詞: | microalgae, anodic aluminum oxide membrane, Raman spectroscopy, filtration, lipid content, surfaced-enhanced Raman spectroscopy, gold nanoparticle |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在各種新興且多樣的再生能源中,生質能源具有相當的發展潛力。作為生質能源的原料之一,由於微藻富含高油脂、生長快速可短期內大量培養且不需佔用耕地面積、有效的固定二氧化碳、可產生許多高經濟價值產物,因此在生質能源的發展上一直佔有重要的地位。為了能夠讓以微藻為原料之生質能源發展更具有商業競爭力,如何快速分析微藻成分,作為篩選高含油量藻種之依據或是用於即時監控微藻生長的情形,進而最佳化培養的條件是相當重要的步驟之ㄧ。
本研究提出製作PDMS孔洞來輔助陽極氧化鋁薄膜抽氣過濾以得到微藻沉積物,並對其進行拉曼分析。實驗結果顯示,利用此方法可以得到較均勻分布的微藻沉積物,有效消除因自然揮發所產生的咖啡環效應。另外,整個分析時間縮短至5分鐘以內,且量測的微藻拉曼訊號也較一致。
另外,本實驗加入四氯金酸試劑利用微藻來還原生成奈米金粒子,透過奈米金粒子的形成以增顯微藻拉曼訊號,並探討四氯金酸濃度以及反應時間對微藻拉曼圖譜之影響。
In this study, rapid and direct Raman analysis of microalgae was proposed and demonstrated through microwells-assisted filtration using anodic aluminum oxide (AAO) membrane. Instead of evaporation, a droplet of algal solution was dispensed in the polydimethylsiloxane (PDMS) microwells, which was placed on top of the AAO membrane, followed by applying the vacuum. The algal cells deposited inside the microwells and were subsequently analyzed by Raman spectroscopy. The results showed that the algal cells were effectively concentrated and distributed quite uniformly inside the microwells, which led to uniform Raman signals among different algae pastes. Moreover, the time for preparing the algae paste was reduced to about 5 minutes. We also added HAuCl4 reagent to biosynthesize gold nanoparticles (AuNPs) and intended to enhance the Raman signals of the algal cells. The results showed that the lipid signals of the algal cells with biosynthesized gold nanoparticles were enhanced up to 20 times after algal cells being incubated in 10mM HAuCl4 for 15min. It was also found that carotenoids and chlorophyll may serve as reducing agents during reduction reaction.
[1] P. J. L. B. Williams, "Biofuel: microalgae cut the social and ecological costs," Nature, vol. 450, pp. 478-478, Nov 22 2007.
[2] V. Tomar, "Raman Spectroscopy of Algae: A Review," Journal of Nanomedicine & Nanotechnology, vol. 2012, 2012.
[3] O. Samek, Z. Pilát, A. Jonáš, P. Zemánek, M. Šerý, J. Ježek, et al., "Raman microspectroscopy based sensor of algal lipid unsaturation," in SPIE Optics+ Optoelectronics, 2011, pp. 80730O-80730O-6.
[4] H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, "In vivo lipidomics using single-cell Raman spectroscopy," Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 3809-3814, Mar 2011.
[5] T. H. Lee, J. S. Chang, and H. Y. Wang, "Rapid and in vivo quantification of cellular lipids in Chlorella vulgaris using near-infrared Raman spectrometry," Anal Chem, vol. 85, pp. 2155-60, Feb 19 2013.
[6] A. Smekal, "Zur quantentheorie der dispersion," Naturwissenschaften, vol. 11, pp. 873-875, 1923.
[7] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501-502, 1928.
[8] G. Turrell and J. Corset, Raman microscopy: developments and applications: Academic Press, 1996.
[9] R. Singh, "CV Raman and the Discovery of the Raman Effect," Physics in Perspective, vol. 4, pp. 399-420, 2002.
[10] H. J. Bowley, D. L. Gerrard, J. D. Louden, G. Turrell, D. J. Gardiner, and P. R. Graves, Practical raman spectroscopy: Springer Science & Business Media, 2012.
[11] E. Smith and G. Dent, Modern Raman spectroscopy: a practical approach: John Wiley & Sons, 2013.
[12] L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, et al., "Raman spectroscopy," Analytical Chemistry, vol. 70, pp. 341R-361R, Jun 1998.
[13] D. Long, "The Raman Effect: A Unified Treatment ofthe Theory of Raman Scattering by Molecules," John Wileyand Sons Limited, Chichester, 2002.
[14] R. L. McCreery, Raman spectroscopy for chemical analysis vol. 225: John Wiley & Sons, 2005.
[15] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," Journal of Physics: Condensed Matter, vol. 14, p. R597, 2002.
[16] M. Fleischmann, P. J. Hendra, and A. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166, 1974.
[17] D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, pp. 1-20, 1977.
[18] M. Kerker, O. Siiman, L. Bumm, and D.-S. Wang, "Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver: erratum," Applied optics, vol. 19, pp. 4137-4137, 1980.
[19] D.-S. Wang and M. Kerker, "Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids," Physical Review B, vol. 24, p. 1777, 1981.
[20] E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium," Journal of Physical Chemistry, vol. 91, pp. 634-643, 1987.
[21] H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Physical Review E, vol. 62, p. 4318, 2000.
[22] M. Inoue and K. Ohtaka, "Surface enhanced Raman scattering by metal spheres. I. Cluster effect," Journal of the Physical Society of Japan, vol. 52, pp. 3853-3864, 1983.
[23] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, et al., "Single molecule detection using surface-enhanced Raman scattering (SERS)," Physical review letters, vol. 78, p. 1667, 1997.
[24] K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, et al., "Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS)," Physical Review E, vol. 57, p. R6281, 1998.
[25] J. Jiang, E. Burstein, and H. Kobayashi, "Resonant raman scattering by crystal-violet molecules adsorbed on a smooth gold surface: evidence for a charge-transfer excitation," Physical review letters, vol. 57, p. 1793, 1986.
[26] J. F. Arenas, M. S. Woolley, I. L. Tocón, J. C. Otero, and J. I. Marcos, "Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states," The Journal of Chemical Physics, vol. 112, pp. 7669-7683, 2000.
[27] A. Otto, "Theory of first layer and single molecule surface enhanced Raman scattering (SERS)," PHYSICA STATUS SOLIDI A APPLIED RESEARCH, vol. 188, pp. 1455-1470, 2001.
[28] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev., vol. 27, pp. 241-250, 1998.
[29] P. Kambhampati, C. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," The Journal of chemical physics, vol. 108, pp. 5013-5026, 1998.
[30] Y. Chisti, "Biodiesel from microalgae," Biotechnology Advances, vol. 25, pp. 294-306, May-Jun 2007.
[31] S. I. Mussatto, G. Dragone, P. M. R. Guimaraes, J. P. A. Silva, L. M. Carneiro, I. C. Roberto, et al., "Technological trends, global market, and challenges of bio-ethanol production," Biotechnology Advances, vol. 28, pp. 817-830, Nov-Dec 2010.
[32] S. M. Renaud, D. L. Parry, L. V. Thinh, C. Kuo, A. Padovan, and N. Sammy, "EFFECT OF LIGHT-INTENSITY ON THE PROXIMATE BIOCHEMICAL AND FATTY-ACID COMPOSITION OF ISOCHRYSIS SP AND NANNOCHLOROPSIS-OCULATA FOR USE IN TROPICAL AQUACULTURE," Journal of Applied Phycology, vol. 3, pp. 43-53, Mar 1991.
[33] S. M. Renaud, H. C. Zhou, D. L. Parry, L. V. Thinh, and K. C. Woo, "Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp, Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp (clone T ISO)," Journal of Applied Phycology, vol. 7, pp. 595-602, Dec 1995.
[34] M. Takagi, Karseno, and T. Yoshida, "Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells," Journal of Bioscience and Bioengineering, vol. 101, pp. 223-226, Mar 2006.
[35] C.-Y. Chen, K.-L. Yeh, H.-M. Su, Y.-C. Lo, W.-M. Chen, and J.-S. Chang, "Strategies to Enhance Cell Growth and Achieve High-Level Oil Production of a Chlorella vulgaris Isolate," Biotechnology Progress, vol. 26, pp. 679-686, May-Jun 2010.
[36] T. Mutanda, D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, and F. Bux, "Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production," Bioresource Technology, vol. 102, pp. 57-70, Jan 2011.
[37] K.-L. Yeh and J.-S. Chang, "Nitrogen starvation strategies and photobioreactor design for enhancing lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels," Biotechnology Journal, vol. 6, pp. 1358-1366, Nov 2011.
[38] K. I. Reitan, J. R. Rainuzzo, and Y. Olsen, "EFFECT OF NUTRIENT LIMITATION ON FATTY-ACID AND LIPID-CONTENT OF MARINE MICROALGAE," Journal of Phycology, vol. 30, pp. 972-979, Dec 1994.
[39] G. A. Fischer and J. J. Kabara, "SIMPLE MULTIBORE COLUMNS FOR SUPERIOR FRACTIONATION OF LIPIDS," Analytical Biochemistry, vol. 9, pp. 303-&, 1964 1964.
[40] L. D. Metcalfe, A. A. Schmitz, and J. R. Pelka, "RAPID PREPARATION OF FATTY ACID ESTERS FROM LIPIDS FOR GAS CHROMATOGRAPHIC ANALYSIS," Analytical Chemistry, vol. 38, pp. 514-&, 1966 1966.
[41] D. Van Wijngaarden, "Modified rapid preparation of fatty acid esters from lipids for gas chromatographic analysis," Analytical Chemistry, vol. 39, pp. 848-849, 1967.
[42] G. H. Huang, G. Chen, and F. Chen, "Rapid screening method for lipid production in alga based on Nile red fluorescence," Biomass & Bioenergy, vol. 33, pp. 1386-1392, Oct 2009.
[43] W. Chen, C. W. Zhang, L. R. Song, M. Sommerfeld, and Q. Hu, "A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae," Journal of Microbiological Methods, vol. 77, pp. 41-47, Apr 2009.
[44] D. Elsey, D. Jameson, B. Raleigh, and M. J. Cooney, "Fluorescent measurement of microalgal neutral lipids," Journal of Microbiological Methods, vol. 68, pp. 639-642, Mar 2007.
[45] Q. Wu, W. H. Nelson, P. Hargraves, J. Zhang, C. W. Brown, and J. A. Seelenbinder, "Differentiation of algae clones on the basis of resonance Raman spectra excited by visible light," Analytical Chemistry, vol. 70, pp. 1782-1787, May 1998.
[46] S. K. Brahma, P. E. Hargraves, W. F. Howard, and W. H. Nelson, "A RESONANCE RAMAN METHOD FOR THE RAPID DETECTION AND IDENTIFICATION OF ALGAE IN WATER," Applied Spectroscopy, vol. 37, pp. 55-58, 1983.
[47] L. Pereira, A. Sousa, H. Coelho, A. M. Amado, and P. J. Ribeiro-Claro, "Use of FTIR, FT-Raman and 13 C-NMR spectroscopy for identification of some seaweed phycocolloids," Biomolecular Engineering, vol. 20, pp. 223-228, 2003.
[48] P. Heraud, B. R. Wood, J. Beardall, and D. McNaughton, "Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells," Journal of Chemometrics, vol. 20, pp. 193-197, May 2006.
[49] S. Ramya, R. P. George, R. V. S. Rao, and R. K. Dayal, "Detection of algae and bacterial biofilms formed on titanium surfaces using micro-Raman analysis," Applied Surface Science, vol. 256, pp. 5108-5115, Jun 2010.
[50] J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, "Reference database of Raman spectra of biological molecules," Journal of Raman Spectroscopy, vol. 38, pp. 1133-1147, Sep 2007.
[51] K. B. Narayanan and N. Sakthivel, "Biological synthesis of metal nanoparticles by microbes," Advances in Colloid and Interface Science, vol. 156, pp. 1-13, Apr 2010.
[52] K. B. Narayanan and N. Sakthivel, "Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents," Advances in Colloid and Interface Science, vol. 169, pp. 59-79, Dec 2011.
[53] J. L. Gardea-Torresdey, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago, et al., "Formation and growth of Au nanoparticles inside live alfalfa plants," Nano Letters, vol. 2, pp. 397-401, Apr 2002.
[54] D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar, and P. Mukherjee, "The use of microorganisms for the formation of metal nanoparticles and their application," Applied Microbiology and Biotechnology, vol. 69, pp. 485-492, Jan 2006.
[55] N. C. Sharma, S. V. Sahi, S. Nath, J. G. Parsons, J. L. Gardea-Torresdey, and T. Pal, "Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials," Environmental Science & Technology, vol. 41, pp. 5137-5142, Jul 2007.
[56] K. Govindaraju, V. Kiruthiga, V. G. Kumar, and G. Singaravelu, "Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects," Journal of Nanoscience and Nanotechnology, vol. 9, pp. 5497-5501, 2009.
[57] G. Singaravelu, J. Arockiamary, V. G. Kumar, and K. Govindaraju, "A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville," Colloids and Surfaces B: Biointerfaces, vol. 57, pp. 97-101, 2007.
[58] P. Rajasulochana, R. Dhamotharan, P. Murugakoothan, S. Murugesan, and P. Krishnamoorthy, "Biosynthesis and characterization of gold nanoparticles using the alga Kappaphycus alvarezii," International Journal of Nanoscience, vol. 9, pp. 511-516, 2010.
[59] N. Chakraborty, A. Banerjee, S. Lahiri, A. Panda, A. N. Ghosh, and R. Pal, "Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation–a novel phenomenon," Journal of applied phycology, vol. 21, pp. 145-152, 2009.
[60] S. Senapati, A. Syed, S. Moeez, A. Kumar, and A. Ahmad, "Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis," Materials Letters, vol. 79, pp. 116-118, Jul 2012.
[61] Y. N. Mata, E. Torres, M. L. Blazquez, A. Ballester, F. Gonzalez, and J. A. Munoz, "Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus," Journal of Hazardous Materials, vol. 166, pp. 612-618, Jul 2009.
[62] T. Luangpipat, I. R. Beattie, Y. Chisti, and R. G. Haverkamp, "Gold nanoparticles produced in a microalga," Journal of Nanoparticle Research, vol. 13, pp. 6439-6445, Dec 2011.
[63] M. Hosea, B. Greene, R. McPherson, M. Henzl, M. D. Alexander, and D. W. Darnall, "ACCUMULATION OF ELEMENTAL GOLD ON THE ALGA CHLORELLA-VULGARIS," Inorganica Chimica Acta-Bioinorganic Chemistry, vol. 123, pp. 161-165, Mar 1986.
[64] D. Parial, H. K. Patra, A. K. Dasgupta, and R. Pal, "Screening of different algae for green synthesis of gold nanoparticles," European Journal of Phycology, vol. 47, pp. 22-29, 2012.
[65] L. Castro, M. L. Blazquez, J. A. Munoz, F. Gonzalez, and A. Ballester, "Biological synthesis of metallic nanoparticles using algae," Iet Nanobiotechnology, vol. 7, pp. 109-116, Sep 2013.
[66] R. H. Lahr and P. J. Vikesland, "Surface-Enhanced Raman Spectroscopy (SERS) Cellular Imaging of Intracellulary Biosynthesized Gold Nanoparticles," Acs Sustainable Chemistry & Engineering, vol. 2, pp. 1599-1608, Jul 2014.
[67] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops," Nature, vol. 389, pp. 827-829, Oct 1997.
[68] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Contact line deposits in an evaporating drop," Physical review E, vol. 62, p. 756, 2000.
[69] H. Hu and R. G. Larson, "Marangoni effect reverses coffee-ring depositions," Journal of Physical Chemistry B, vol. 110, pp. 7090-7094, Apr 2006.
[70] W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, "Influence of substrate conductivity on circulation reversal in evaporating drops," Physical Review Letters, vol. 99, p. 4, Dec 2007.
[71] X. Xu and J. Luo, "Marangoni flow in an evaporating water droplet," Applied Physics Letters, vol. 91, p. 124102, 2007.
[72] R. Bhardwaj, X. H. Fang, and D. Attinger, "Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study," New Journal of Physics, vol. 11, p. 33, Jul 2009.
[73] O. E. Ruiz and W. Z. Black, "Evaporation of water droplets placed on a heated horizontal surface," Journal of Heat Transfer-Transactions of the Asme, vol. 124, pp. 854-863, Oct 2002.
[74] E. F. Crafton and W. Black, "Heat transfer and evaporation rates of small liquid droplets on heated horizontal surfaces," International journal of heat and mass transfer, vol. 47, pp. 1187-1200, 2004.
[75] F. Girard and M. Antoni, "Influence of Substrate Heating on the Evaporation Dynamics of Pinned Water Droplets," Langmuir, vol. 24, pp. 11342-11345, Oct 2008.
[76] D. Soltman and V. Subramanian, "Inkjet-printed line morphologies and temperature control of the coffee ring effect," Langmuir, vol. 24, pp. 2224-2231, Mar 2008.
[77] F. Girard, M. Antoni, S. Faure, and A. Steinchen, "Influence of heating temperature and relative humidity in the evaporation of pinned droplets," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 323, pp. 36-49, Jun 2008.
[78] P. A. Kralchevsky and N. D. Denkov, "Capillary forces and structuring in layers of colloid particles," Current Opinion in Colloid & Interface Science, vol. 6, pp. 383-401, 2001.
[79] A. S. Sangani, C. Lu, K. Su, and J. A. Schwarz, "Capillary force on particles near a drop edge resting on a substrate and a criterion for contact line pinning," Physical Review E, vol. 80, p. 011603, 2009.
[80] B. M. Weon and J. H. Je, "Capillary force repels coffee-ring effect," Physical Review E, vol. 82, p. 4, Jul 2010.
[81] A. G. Marin, H. Gelderblom, D. Lohse, and J. H. Snoeijer, "Rush-hour in evaporating coffee drops," Physics of Fluids, vol. 23, p. 2, Sep 2011.
[82] P. J. Yunker, T. Still, M. A. Lohr, and A. G. Yodh, "Suppression of the coffee-ring effect by shape-dependent capillary interactions," Nature, vol. 476, pp. 308-311, Aug 2011.
[83] M. Cavallini and F. Biscarini, "Nanostructuring conjugated materials by lithographically controlled wetting," Nano Letters, vol. 3, pp. 1269-1271, Sep 2003.
[84] F. Q. Fan and K. J. Stebe, "Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity," Langmuir, vol. 20, pp. 3062-3067, Apr 2004.
[85] A. P. Sommer and N. Rozlosnik, "Formation of crystalline ring patterns on extremely hydrophobic supersmooth substrates: Extension of ring formation paradigms," Crystal Growth & Design, vol. 5, pp. 551-557, Mar-Apr 2005.
[86] D. M. Kuncicky and O. D. Velev, "Surface-guided templating of particle assemblies inside drying sessile droplets," Langmuir, vol. 24, pp. 1371-1380, Feb 2008.
[87] X. Y. Shen, C. M. Ho, and T. S. Wong, "Minimal Size of Coffee Ring Structure," Journal of Physical Chemistry B, vol. 114, pp. 5269-5274, Apr 2010.
[88] T. Kajiya, W. Kobayashi, T. Okuzono, and M. Doi, "Controlling the Drying and Film Formation Processes of Polymer Solution Droplets with Addition of Small Amount of Surfactants," Journal of Physical Chemistry B, vol. 113, pp. 15460-15466, Nov 2009.
[89] T. Still, P. J. Yunker, and A. G. Yodh, "Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops," Langmuir, vol. 28, pp. 4984-4988, Mar 2012.
[90] S. Watanabe, K. Inukai, S. Mizuta, and M. T. Miyahara, "Mechanism for Stripe Pattern Formation on Hydrophilic Surfaces by Using Convective Self-Assembly," Langmuir, vol. 25, pp. 7287-7295, Jul 2009.
[91] H. B. Eral, D. M. Augustine, M. H. G. Duits, and F. Mugele, "Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting," Soft Matter, vol. 7, pp. 4954-4958, 2011.
[92] 呂維明、莊清榮, 化工單元操作(一) 流體力學與流體操作, 民97.12.
[93] L. Svarovsky, "Filtration fundamentals," Solid liquid separation, vol. 2, 1981.
[94] G. SIEGFRIED RIPPERGER and C. ALT, "Filtration, 1. Fundamentals," Evaluation, vol. 2, p. 1, 2012.
[95] L. Gouveia and A. C. Oliveira, "Microalgae as a raw material for biofuels production," Journal of Industrial Microbiology & Biotechnology, vol. 36, pp. 269-274, Feb 2009.
[96] X. M. Shi, F. Chen, J. P. Yuan, and H. Chen, "Heterotrophic production of lutein by selected Chlorella strains," Journal of Applied Phycology, vol. 9, pp. 445-450, 1997.
[97] K. L. Yeh, C. Y. Chen, and J. S. Chang, "pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source," Biochemical Engineering Journal, vol. 64, pp. 1-7, May 2012.
[98] S. J. Oldenburg, "Silver nanoparticles: properties and applications," nano Composix), retrived 8th August, 2013.
校內:2021-06-30公開