| 研究生: |
陳威廷 Chen, Wei-Ting |
|---|---|
| 論文名稱: |
利用莫爾條紋技術與奈米壓印微影術製作三維光子晶體 Fabrication of multilayer photonic structures using nano-imprint lithography with Moiré fringe technique |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 紫外光軟模奈米壓印微影術 、氣壓式奈米壓印系統 、多層金屬結構 、莫爾條紋技術 、嚴格耦合波分析法 |
| 外文關鍵詞: | Ultraviolet soft mode NIL, CAP Nano-Imprint system, Multi-layer metal structure, Moiré fringe technique, Rigorous Coupled-Wave Analysis (RCWA) |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米壓印微影技術是具有次世代極發展潛力的一項技術,也是一項低成本且快速的技術。在本篇論文中,主要研究利用紫外光軟模奈米壓印微影技術去製作一、二維的金屬結構,再藉由莫爾條紋技術去進行對準,製作出多層金屬結構。
首先,我們建構氣壓輔助式整合奈米壓印系統,接著選用高蝕刻選擇比之雙層材料進行奈米壓印製程,然後利用金屬舉離技術製作出週期線寬比無失真的一、二維金屬結構。為製作三維結構,需要將液態二氧化矽當作介面層塗布在已經做好的金屬結構上,在此介面層上重複使用奈米壓印技術製作金屬結構。在壓印上層結構時,我們進一步以莫爾條紋技術對準上下層結構,成功堆疊出三維光子晶體之金屬結構。最後量測製作完成的三維光子晶體之頻譜,並將此頻譜與嚴格耦合波分析法模擬之頻譜比較。
最後,我們成功的利用奈米壓印微影技術製造出300 nm 至1 m的一維、二維與三維金屬結構,將其應用於多層金屬光子晶體的堆疊,也藉由此過程研發改良了奈米壓印系統和穿透式光源對準系統。
Nano-Imprint lithography (NIL) is not only a potential technology among the next generation lithographies but also a low-cost and rapid technological. In this paper, the main reseach used ultraviolet Nano-Imprint lithography(UV-NIL) to produce 1-D and 2-D metal structures. Then we used Moiré fringe technique to align and produced a multi-layer metal structure. First, we constructed pressure-assisted Nano-Imprint system, followed by selection of high etch selectivity of the bilayer material for NIL process. And then we studied how to create the correct duty ratio distortion one and two dimensional metallic structures quickly by using Bi-layer resist’s different etching rate. Finally, we could fabricate metal structure after lift-off process.
In order to fabricate 3-D photonic crystal structure, we coated liquid silicon dioxide on the metal structure as interface layer and using UV-NIL to produce metal structures on the interface layer that were aligned by Moiré fringe technology. We measured the spectrum of 3-D metallic photonic crystals and simulated the optical characteristic by rigorous coupled-wave analysis method (RCWA).
Finally, we have successfully demonstrated the improved alignment and UV-NIL systems to fabricate 300 nm to 1m pitch of metal structure(1-D to 3-D) by NIL.
1. G. E. Moore, "Progress in digital integrated electronics," Electron Devices Meeting, 11-13 (1975).
2. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
3. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B 14, 4129-4133 (1996).
4. "International Technology Roadmap For Semiconductors 2012 Edition Lithography
http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf."
5. S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, "Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating," Nanotechnology 21, 295303 (2010).
6. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, "Fabrication of nanostructures using a uv-based imprint technique," Microelectronic Engineering 53, 233-236 (2000).
7. M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz, "Characterization and application of a UV-based imprint technique," Microelectronic Engineering 57-8, 361-366 (2001).
8. H. Lan, and H. Liu, "UV-Nanoimprint Lithography: Structure, Materials and Fabrication of Flexible Molds," Journal of Nanoscience and Nanotechnology 13, 3145-3172 (2013).
9. Y. X. a. G. M. Whitesides, "Soft Lithography," Annual Review 28, 153-184 (1998).
10. P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, "Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography," J. Vac. Sci. Technol. B 17, 2965-2969 (1999).
11. M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," Journal of Microlithography Microfabrication and Microsystems 4, 11021-11026 (2005).
12. H. Takasaki, "Moire Topography," Japanese Journal of Applied Physics 14, 441-446 (1975).
13. J. Shao, Y. Ding, H. Tian, X. Li, X. Li, and H. Liu, "Digital moiré fringe measurement method for alignment in imprint lithography," Optics & Laser Technology 44, 446-451 (2012).
14. "Silicon-based MEMS fabrication technology--Basic
http://standardsproposals.bsigroup.com/Home/getPDF/1888
".
15. "Guide to Great Alignment Marks - McNamara 2013
http://www.ece.louisville.edu/mcnamara/ProcessingTips/Guide%20to%20Great%20Alignment%20Marks%20-%20McNamara%202013.pdf."
16. S. Pagliara, L. Persano, A. Camposeo, R. Cingolani, and D. Pisignano, "Registration accuracy in multilevel soft lithography," Nanotechnology 18, 175302 (2007).
17. N. I. Nikolaev, and A. Erdmann, "Rigorous simulation of alignment for microlithography," Journal of Microlithography Microfabrication and Microsystems 2, 220-226 (2003).
18. A. Fuchs, B. Vratzov, T. Wahlbrink, Y. Georgiev, and H. Kurz, "Interferometric in situ alignment for UV-based nanoimprint," Journal of Vacuum Science & Technology B 22, 3242-3245 (2004).
19. C. Wang, and T. Suga, "Measurement of alignment accuracy for wafer bonding by moiré method," Japanese Journal of Applied Physics 46, 1989-1993 (2007).
20. O. Fakhr, K. Karrai, and P. Lugli, "Versatile multilevel soft lithography method with micrometer alignment using all-flexible rubber stamps and moire fringe technique," Langmuir : the ACS journal of surfaces and colloids 28, 4024-4029 (2012).
21. M. C. King, and D. H. Berry, "Photolithographic mask alignment using moire techniques," Applied Optics 11, 2455-2459 (1972).
22. G. Y. Jung, E. Johnston-Halperin, W. Wu, Z. N. Yu, S. Y. Wang, W. M. Tong, Z. Y. Li, J. E. Green, B. A. Sheriff, A. Boukai, Y. Bunimovich, J. R. Heath, and R. S. Williams, "Circuit fabrication at 17 nm half-pitch by nanoimprint lithography," Nano letters 6, 351-354 (2006).
23. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Improved pattern transfer in soft lithography using composite stamps," Langmuir : the ACS journal of surfaces and colloids 18, 5314-5320 (2002).
24. M. S. P. Mudigoudra B.S., Chougale R.B., "Thermal behavior of poly (vinyl alcohol)/ poly (vinyl pyrrolidone)/chitosan ternary polymer blend Films," Research Journal of Recent Sciences, 83-86(2012).
25. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Advanced Functional Materials 17, 3027-3041 (2007).
26. J. H. Chang, and S. Y. Yang, "Gas pressurized hot embossing for transcription of micro-features," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 10, 76-80 (2003).
27. H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, "Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field," Nano letters 6, 2438-2441 (2006).
28. B.-R. Lu, J. Wan, Z. Shu, S.-Q. Xie, Y. Chen, E. Huq, X.-P. Qu, and R. Liu, "Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8," Microelectronic Engineering 86, 619-621 (2009).
29. G. Barbillon, F. Hamouda, S. Held, P. Gogol, and B. Bartenlian, "Gold nanoparticles by soft UV nanoimprint lithography coupled to a lift-off process for plasmonic sensing of antibodies," Microelectronic Engineering 87, 1001-1004 (2010).
30. F. Hamouda, G. Barbillon, S. Held, G. Agnus, P. Gogol, T. Maroutian, S. Scheuring, and B. Bartenlian, "Nanoholes by soft UV nanoimprint lithography applied to study of membrane proteins," Microelectronic Engineering 86, 583-585 (2009).
31. N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten, and H. Kurz, "Improved mold fabrication for the definition of high quality nanopatterns by Soft UV-Nanoimprint lithography using diluted PDMS material," Microelectronic Engineering 84, 904-908 (2007).
32. N. B. H. C. Scheer, M. Wissen, and S. Möllenbeck, "Impact of glass temperature for thermal nanoimprint," J. Vac. Sci. Technol. B
25(6), 2392-2395 (2007).
33. J. Perumal, T. H. Yoon, H. S. Jang, J. J. Lee, and D. P. Kim, "Adhesion force measurement between the stamp and the resin in ultraviolet nanoimprint lithography--an investigative approach," Nanotechnology 20, 055704 (2009).
34. J. Shi, A. P. Fang, L. Malaquin, A. Pépin, D. Decanini, J. L. Viovy, and Y. Chen, "Highly parallel mix-and-match fabrication of nanopillar arrays integrated in microfluidic channels for long DNA molecule separation," Applied Physics Letters 91, 153114 (2007).
35. P. Voisin, M. Zelsmann, R. Cluzel, E. Pargon, C. Gourgon, and J. Boussey, "Characterisation of ultraviolet nanoimprint dedicated resists," Microelectronic Engineering 84, 967-972 (2007).
36. M. Mühlberger, I. Bergmair, W. Schwinger, M. Gmainer, R. Schöftner, T. Glinsner, C. Hasenfuß, K. Hingerl, M. Vogler, H. Schmidt, and E. B. Kley, "A Moiré method for high accuracy alignment in nanoimprint lithography," Microelectronic Engineering 84, 925-927 (2007).
37. K.-d. Kim, A. Altun, D.-g. Choi, and J.-h. Jeong, "A 4-in.-based single-step UV-NIL tool using a low vacuum environment and additive air pressure," Microelectronic Engineering 85, 2304-2308 (2008).
38. R. H. Pedersen, O. Hansen, and A. Kristensen, "A compact system for large-area thermal nanoimprint lithography using smart stamps," Journal of Micromechanics and Microengineering 18, 055018 (2008).
39. N. Suehira, A. Terasaki, S. Okushima, J. Seki, H. Ono, and H. Ina, "Position measurement method for alignment in UV imprint using a high index mold and “electronic” moiré technique," J. Vac. Sci. Technol. B 25, 853 (2007).
40. J. Lee, K. Choi, G. Kim, and S. Lee, "The UV-nanoimprint lithography equipment with multi-head imprinting unit for sub-50nm half-pitch patterns," Microelectronic Engineering 84, 963-966 (2007).
41. C. Wang, and T. Suga, "A Novel Moire Fringe Assisted Method for Nanoprecision Alignment in Wafer Bonding," Electronic Components and Technology Conference 59, 872-878 (2009).
42. C. Wang, S. Taniyama, Y.-H. Wang, and T. Suga, "High-Precision Alignment for Low-Temperature Wafer Bonding," Journal of The Electrochemical Society 156, H197 (2009).
43. T. Mii, and H. C. Casey, "Properties of spin-on glass as an insulator for inp metal-insulator-semiconductor structures," Journal of Electronic Materials 19, 1281-1288 (1990).
44. X. Xiong, W.-H. Sun, Y.-J. Bao, M. Wang, R.-W. Peng, C. Sun, X. Lu, J. Shao, Z.-F. Li, and N.-B. Ming, "Construction of a chiral metamaterial with a U-shaped resonator assembly," Physical Review B 81, 075119 (2010).
45. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Physical Review Letters 97, 177401 (2006).
46. Y. Svirko, N. Zheludev, and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Applied Physics Letters 78, 498-500 (2001).
47. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Kall, "Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches," Journal of the Optical Society of America B-Optical Physics 25, 659-667 (2008).
48. U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachey, and V. M. Shalaev, "Optical metamagnetism and negative-index metamaterials," Mrs Bulletin 33, 921-926 (2008).
49. A. Boltasseva, and V. M. Shalaev, "Fabrication of optical negative-index metamaterials: Recent advances and outlook," Metamaterials 2, 1-17 (2008).
50. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, "Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates," Optics Express 19, 6990-6998 (2011).
51. K. Aydin, Z. Li, L. Sahin, and E. Ozbay, "Negative phase advance in polarization independent, multi-layer negative-index metamaterials," Optics Express 16, 8835-8844 (2008).