簡易檢索 / 詳目顯示

研究生: 高慶華
Kao, Ching-Hua
論文名稱: 鋯鈦酸鉛(Pb(ZrTi)O3,PZT)奈米管鐵電極化特性研究
Study of ferroelectric polarization in PZT nanotubes
指導教授: 陳宜君
Chen, Yi.-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 90
中文關鍵詞: 陽極氧化鋁奈米管鋯鈦酸鉛鐵電材料
外文關鍵詞: ferroelectric, PZT, nanotube, AAO
相關次數: 點閱:100下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,主要探討奈米鐵電管的電極化特性。我們分別利用草酸與磷酸當作電解液,在矽基板上自製兩種不同尺寸的多孔陽極氧化鋁(AAO)模板,孔洞半徑分別約在50~90 nm和110~180 nm之間,並利用多孔氧化鋁模板來合成合成鋯鈦酸鉛 (Pb(ZrTi)O3, PZT) 鐵電奈米管陣列。為了探討鐵電管陣列的奈米鐵電特性,本研究在陽極氧化鋁與矽基板之間鍍上Pt與Ti來作為電性量測的底電極。利用兩種不同尺寸模板合成的鐵電奈米管陣列均為多晶結構,奈米管直徑範圍分別約為45~75 nm與100~150 nm左右。在掃描探針顯微鏡直接的觀察下顯示,奈米管的幾何尺寸對鐵電性質的影響主要藉由局部晶相的改變。草酸AAO所製奈米管中,管直徑越小時極化強度越強,且單一管內晶軸方向偏離較小,電域分布單純,多為90度或180度的雙電域結構。磷酸AAO之鐵電奈米管直徑在100 nm以上時,管內為隨意多晶結構,電性與壓電特性受局部晶軸方向主導,c軸方向若垂直外加電場方向將使的極化量較小,矯頑場較大且局部壓電特性較弱。

    In this study, the electric polarization properties of ferroelectric nanotubes were investigated. Anodic aluminum oxide (AAO) templates with two different diameters were obtained by using H2C2O4 and H3PO4 electrolyte. The diameters of the holes are about 50~90 nm and 110~180 nm for H2C2O4 and H3PO4, respectively.。Pb(ZrTi)O3, PZT, nano-tube array were synthesized based on these templates. To systematically measure the ferroelectric properties of the nanotubes, the AAO films were specially designed to grow on Pt/Ti. The ferroelectric tubes obtained by the template method were polycrystalline, and their diameters are of 45~75 nm and 100~150 nm. By using the scanning probe microscope, the ferroelectric domain can be in-situ observed, which shows the geometrical effects on the ferroelectric properties were mainly through the crystalline phase. For nanotubes synthesized in H2C2O4-prepared AAO, the polarization increases with narrowing diameters. The electric domains distribute simply, and are mainly 90 or 180 degree domains. In comparison, the grains of nanotubes synthesized in H3PO4-prepared AAO are randomly oriented. In this case, the local electric properties are dominated by the easy axis of polarization. The c-axis oriented grains posses lower polarization, higher coercive fields, and smaller piezoelectric coefficients.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 第二章 文獻回顧 3 2.1鐵電材料簡介 3 2.1.1鐵電性機制 4 2.1.2鈣鈦礦結構 5 2.1.3 鐵電材料應用-鐵電性記憶體 7 2.2 PZT鐵電材料 9 2.2.2 鋯鈦酸鉛(PZT)之相圖 9 2.2.3 變形相界(MPB) 10 2.3掃描探針顯微術相關研究 11 2.3.1 原子力顯微鏡 13 2.3.2 靜電力顯微鏡 15 2.3.3 壓電力顯微鏡 17 2.4多孔陽極氧化鋁模板 18 2.4.1 陽極氧化鋁(Anodic Aluminum Oxide, AAO) 19 2.4.2 陽極氧化鋁製備方法與結構 19 2.4.3 陽極氧化鋁成長機制 21 2.5奈米鐵電特性相關研究 23 2.5.1 鐵電薄膜奈米電性 23 2.5.2 鐵電奈米管 25 第三章 實驗方法 30 3.1多孔陽極氧化鋁模板的製作 30 3.1.1 基材準備 30 3.1.2 鋁膜陽極氧化 31 3.2鐵電性奈米管狀物的製作 32 3.3原子力顯微鏡量測 34 3.3.1 樣品表面形貌量測 34 3.3.2 靜電力顯微鏡的電性量測 37 3.3.3 壓電力顯微鏡的電性量測 39 3.3.4 壓電係數的量測 40 3.4 樣品基本特性檢測 42 3.4.1 X光繞射分析儀 42 3.4.2 掃瞄式電子顯微鏡 42 第四章 結果與討論 44 4.1 鋯鈦酸鉛(PZT)鐵電奈米管的合成 44 4.1.1 陽極氧化鋁模板的製備 44 4.1.2 氧化鋁模板合成鋯鈦酸鉛奈米管 58 4.1.3 奈米鐵電管X-ray晶相分析 65 4.2奈米管電性研究 67 4.2.1草酸AAO奈米管電性量測 67 4.2.2磷酸AAO奈米管電性量測 76 第五章 結論 84 參考文獻 85 圖目錄 圖 2 1 鐵電域極化情形示意圖 4 圖 2-2 鐵電晶體的電滯曲線圖 5 圖 2-3 鈣鈦礦結構示意圖 6 圖 2-4 Pb(Zr0.2Ti0.8)O3 結構晶胞受極化圖 7 圖 2-5 記憶體元件圖 8 圖 2-6 PbZrO3-PbTiO3相圖 10 圖 2-7 PbZrO3-PbTiO3系統的吉布斯自由能圖 11 圖 2-8 MPB成份材料性質表現圖 11 圖 2-9 原子力顯微鏡探針運作模式示意圖 14 圖 2-10 凡得瓦力與距離關係圖 14 圖 2-11 一般探針與CNT探針所測得的表面形貌與電荷分佈圖 15 圖 2-12 AFM表面形貌和EFM相位圖 16 圖 2-13 鐵電樣品out-plane與in-plane的壓電回應訊號圖 18 圖 2-14 孔洞大小與電壓的關係 20 圖 2-15 陽極氧化鋁結構 21 圖 2-16 氧化鋁表面形成局部電場集中之過程 22 圖 2-17 陽極氧化鋁孔洞形成之機制 22 圖 2-18 鋯鈦酸鉛薄膜電域變化的靜電力顯微鏡3D圖像 23 圖 2-19 鈦酸鍶鋇薄膜的PFM影像 24 圖 2-20 鋯鈦酸鉛薄膜的電滯曲線 24 圖 2-21 鐵電奈米管SEM圖像 26 圖 2-22 單根PZT奈米管的電滯曲線 27 圖 2-23 BTO奈米管三維影像AFM表面形貌和EFM相位圖 27 圖 2-24 多孔矽基板的SEM表面圖象與鋯鈦酸鉛奈米柱陣列 AFM 表面形貌 28 圖 2-25 鋯鈦酸鉛奈米柱陣列AFM表面形貌與壓電力顯微鏡 29 圖 3 1 鋁陽極氧化裝置示意圖 31 圖 3-2 兩階段陽極處理示意圖 32 圖 3-3 多孔性模版之旋鍍填充示意圖 33 圖 3-4 原子力顯微鏡探針運作模式圖 35 圖 3-5 探針振盪振幅A與振盪頻率ω間的頻率響應關係圖 36 圖 3-6 di-CP II 原子力顯微鏡 37 圖 3-7 靜電力顯微鏡裝置圖 37 圖 3-8 光偏折訊號與接觸力關係圖與接觸力與z軸機械位移 曲線圖 41 圖 3-9 光偏折訊號與z軸機械位移曲線圖 41 圖 4-1 鋁膜表面的SEM圖像 46 圖 4-2 草酸AAO第一次陽極處理後的SEM圖像 46 圖 4-3 磷酸AAO第一次陽極處理後的SEM圖像 47 圖 4-4 移除第一次陽極處理後鋁膜表面的SEM圖像 48 圖 4-5 草酸AAO第一次陽極處理後的SEM圖像 50 圖 4-6 磷酸AAO第一次陽極處理後的SEM圖像 51 圖 4-7 擴孔後的草酸AAO的SEM圖像 52 圖 4-8 擴孔後的磷酸AAO的SEM圖像 53 圖 4-9 草酸AAO陽極處理電流與時間分布圖 55 圖 4-10 氧化鋁未移除乾淨鋁膜與繼續做陽極處理AAO孔洞 56 圖 4-11 磷酸AAO陽極處理電流與時間分布圖 57 圖 4-12 填充於AAO模板中已經硬化的奈米管與堆積在 AAO上的PZT膜之SEM側面圖 59 圖 4-13 移除PZT膜後的AAO孔洞與奈米管SEM圖像 60 圖 4-14 AAO被完全蝕刻完的PZT奈米管SEM圖像 61 圖 4-15 經過二階段退火過程的PZT草酸AAO奈米管的 SEM圖像 63 圖 4-16 經過二階段退火過程的PZT草酸AAO奈米管的 SEM圖像 64 圖 4-17 奈米鐵電管與鐵電厚膜X-ray晶相分析 66 圖 4-18 草酸AAO奈米管的AFM表面形貌圖 68 圖 4-19 草酸AAO奈米管EFM圖像,掃描區域為圖4-18(b) 71 圖 4-20 草酸AAO奈米管的AFM表面形貌與EFM圖像 72 圖 4-21 C1與C2奈米管受外加電場極化示意圖 73 圖 4-22 草酸AAO奈米管的AFM表面形貌與EFM圖像 74 圖 4-23 單根奈米管電容力訊號隨外加電壓變化關係圖 75 圖 4-24 奈米管表面電容斜率與管壁直徑關係圖 75 圖 4-25 單根奈米管電容訊號絕對值與外加電壓的關係圖 76 圖 4-26 磷酸AAO奈米管的AFM表面形貌圖 78 圖 4-27 草酸AAO奈米管EFM圖像,掃描區域為圖4-20(b) 78 圖 4-28 磷酸AAO奈米管表面形貌與EFM圖像,掃描區域 為圖4-21(b)藍色方框區域 79 圖 4-29 單根奈米管三個區域電容力訊號與外加電壓關係圖 80 圖 4-30 單根奈米管三個區域表面電容訊號絕對值與外加電壓 的關係圖 80 圖 4-31 磷酸AAO奈米管表面形貌與PFM圖像 82 圖 4-32 壓電係數dzz隨外加電壓的關係圖 83 表目錄 表 3-1 各種觀測鐵電材料的顯微術 34

    1. Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, “An introduction to the physics of ferroelectrics”, Gordon and Breach Science Publishers, New York, (1976).
    2. Kenji Uchino, “Ferroelectric Devices”, Marcel Dekker, Inc., New York, (2000).
    3. Berdard Jaffe, William R. Cook and Hans Jaffe, “Piezoelectric Ceramics”, Academic Press Inc., London, (1970).
    4. William D. Callister, Jr., “Materials Science And Engineering”, John Wiley &Sons Inc., 3th, Canada, (1994).
    5. 鐘維烈, “鐵電體物理學”, 科學出版社, (2000).
    6. Patrycja Paruch, Thierry Giamarchi, Thomas Tybell and Jean-Marc Triscone, “Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films”, American Physical Society, APS March Meeting, March, pp.21-25, (2005).
    7. Yuhuan. Xu, “Ferroelectric Material and Their Applications”, Elsevier, Amsterdam, (1991).
    8. Ian M. Reaney, Enrico L. Colla and Nava Setter, “Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor”, Jpn. J. Appl., Vol. 33, pp. 3984-3990, (1994).
    9. Norman W. Schubring, Joseph V. Mantese, Adolph L. Micheli, Antonio B. Catalan, and Richard J. Lopez, “Charge Pumping And Pseudopyroelectric Effect In Active Ferroelectric Relaxor-Type Films”, Phys. Rev. Lett., Vol.65, p.1778, (1992).
    10. A. J. Moulson and J. M. Herbert, “Electroceramics Materials Properties Applications”, Chapman&Hall, New York, (1990).
    11. J. Schaefer, W. Sigmund, S. Roy and F. Aldinger, “Low temperature synthesis of ultrafine Pb(Zr,Ti)O3 powder by sol-gel combustion”, Journal of Materials Reasearch, Vol.12, No.10, pp.2518-2521, (1997).
    12. R. E. Newnham and L. E. Cross, “Effect of elastic boundary conditions on morphotropic Pb(Zr,Ti)O3 piezoelectrics”, Phys. Rev. B, Vol.34, p.1595, (1986).
    13. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, “7 × 7 Reconstruction on Si(111) Resolved in Real Space”, Phys Rev. Lett, Vol.49, p.57-61, (1982).
    14. G. Binnig, C. F. Quate and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett. Vol.56, p.930-933 (1986).
    15. Sergei N. Magonov and Myung-Hwan Whangbo, “Surface analysis with STM and AFM : experimental and theoretical aspects of image analysis”, Weinheim ; New York : VCH, (1996).
    16. S.-D. Tzeng, C.-L. Wu, Y.-C. You, T. T. Chen and S. Gwo, “Charge imaging and manipulation using carbon nanotube probes”, Appl. Phys. Lett., Vol.81, No.23, (2003).
    17. Long Ba, Jian Shu, Zhung Lu, Juntao Li, Wei Lei, Baoping Wang and Waisang Li, “Probing local electric field distribution of nanotube arrays using electrostatic force microscopy”, J. Appl. Phys., Vol.93, No.12, (2003).
    18. P. Guthner and K. Dransfeld, “Local poling of ferroelectric polymers by scanning force microscopy”, Appl. Phys. Lett., Vol.61, pp.1137-1139, (1992).
    19. M. Abplanalp, L.M. Eng and P. Günter, “Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy”, Appl. Phys. A, Vol.66, pp.s231-s234, (1998).
    20. M. Alexe and A. Gruverman, “Nanoscale Characterisation of Ferroelectric Materials-Scanning Probe Microscopy Approach”, Springer, (2004).
    21. H. Chen, R. G. Downing, “Guiding and focusing neutron beams using capillary optics”, Nature, 357, 391-393, (1992).
    22. R. J. Tonucci, B. L. Justus, “Nanochannel array glass”, Science, 258(30), 783-785, (1992).
    23. H. Masuda, K. Fukuda, “Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina”, Science, 268, 1466-1471, (1995).
    24. A. P. Li, F. Mu¨ller, A. Birner, K. Nielsch, and U. Go¨sele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, J Appl. Phys, 84, 6023, (1998).
    25. A.P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina”, Adv. Mat. 11, 483-487,(1999).
    26. Tsai-Yu Cheng, “Study of nano-scaled alumina template mask by using self-assembly anodic oxidation method”, 國立暨南國際大學電機工程研究所碩士論文, 2003年。
    27. Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask” Appl. Phys. Lett. 78, 142-143,(2001).
    28. Dmitri Routkevitch, Alexander N. Govyadinov and Peter P. Mardilovich, “High aspect ratio, High resolution ceramic MEMS”, MEMS. 2, 39, (2000).
    29. G.E. Thompson, “Porous anodic alumina : fabrication, characterization and applications,” Thin solid films. 297, 192, (1997).
    30. Jessensky, F. Muller, U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina” Appl. Phys. Lett. 72, 1173, (1998).
    31. K. Lee, H. Shin, W. K. Moon, J. U. Jeon and Y. E. Pak, “Detection Mechanism of Spontaneous Polarization in Ferroelectric Thin Films Using Electrostatic Force Microscopy”, Jpn. J. Appl. Phys. Vol.38, No.3A, pp.L264 –L266, (1999).
    32. Chia-Hui Chueh, “Studies of PZT thin films by variable-temperature piezoresponse force microscopy”, 國立清華大學物理研究所碩士論文,2003年。
    33. H. N. Lin, S. H. Chen, S. T. Ho, P. R. Chen, and I. N. Lin, “Comparative measurements of the piezoelectric coefficient of a lead zirconate titanate film by piezoresponse force microscopy using electrically characterized tips”, J. Vac. Sci. Technol., B 21, pp.916-918, (2003).
    34. Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham and Hongkun Park, “Fabry-Perot interference in a nanotube electron waveguide”, Nature, Vol.411, p.665, (2001).
    35. Yun Luo, Izabela Szafraniak, Nikoiai D. Zakharon, Valanoor Nagarajan, “Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate”, Appl. Phys. Lett., Vol.83, No.3, pp.440-442, (2003).
    36. T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen and T. P. Russell, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates”, Science, Vol.290, p.2126, (2000).
    37. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo and Peidong Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, Vol.292, p.1897, (2001).
    38. Yi Cui and Charles M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”, Science, Vol.291, p.851, (2001).
    39. Charles R. Martin, “Template Synthesis of Elevtronically Conductive Polymer Nanostructures”, Acc. Chem. Res., Vol.28, pp.61-68, (1995).
    40. M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi and U. Go¬sele, “Polymer Nanotubes by Wetting of Ordered Porous Templates”, SCIENCE, Vol.296, p.1997, (2002).
    41. Catalin Harnagea, Marin Alexe, Jo¨ rg Schilling, Jinsub Choi, Ralf B. Wehrspohn, Dietrich Hesse and Ulrich Go¨sele, “Mesoscopic ferroelectric cell arrays prepared by imprint lithography”, Appl. Phys. Lett., Vol.83, pp.1827-1829, (2003).
    42. Brinda B. Lakshmi, Charies J. Patrissi, and Charles R. Martin, “Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures”, Chem. Mater., Vol.9, pp.2544-2550, (1997).
    43. John C. Hulteen and Charles R. Martin, “Ageneral template-based method for the preparation of nanomaterials”, J. Mater. Chem., Vol.7, pp.1075-1087, (1997).
    44. R.B. Wehrspohn and J. Schilling, “Electrochemically Prepared Pore Arrays for Photonic-Crystal Applications”, MRS Bull., Vol. 8, pp.623, (2001).
    45. S. F. Kistler, “Surfactant Science Series”, Dekker, Vol.49, chap.6, New York, (1993).
    46. Wan Soo Yun, Jeffrey J. Urban, Qian Gu, and Hongkun Park, “Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy”, Nano Lett., Vol.2, No.5, pp .447-450, (2002).
    47. Catalin Harnagea, Marin Alexe, Jörg Schilling, Jinsub Choi, Ralf B. Wehrspohn, Dietrich Hesse, and Ulrich Gösele, “Mesoscopic ferroelectric cell arrays prepared by imprint lithography”, Appl. Phys. Lett., Vol.83, pp.1827-1827, (2003).
    48. R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, “Surface and domain structures of ferroelectric crystals studied with scanning force microscopy”, J. Appl. Phys., Vol.74, No.12, (1993).
    49. Seungbum Hong and Jungwon Woo, “Principle of ferroelectric domain imaging using atomic force microscope”, J. Appl. Phys., Vol. 89, No.2, (2001).
    50. V. Nagarajan, S. Aggarwal, A. Gruverman, R. Ramesh, and R. Waser, “Nanoscale polarization relaxation in a polycrystalline ferroelectric thin film: Role of local environments”, Appl. Phys. Lett. 86, 262910, (2005).

    下載圖示 校內:2009-01-30公開
    校外:2010-01-30公開
    QR CODE