| 研究生: |
高慶華 Kao, Ching-Hua |
|---|---|
| 論文名稱: |
鋯鈦酸鉛(Pb(ZrTi)O3,PZT)奈米管鐵電極化特性研究 Study of ferroelectric polarization in PZT nanotubes |
| 指導教授: |
陳宜君
Chen, Yi.-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 陽極氧化鋁 、奈米管 、鋯鈦酸鉛 、鐵電材料 |
| 外文關鍵詞: | ferroelectric, PZT, nanotube, AAO |
| 相關次數: | 點閱:100 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,主要探討奈米鐵電管的電極化特性。我們分別利用草酸與磷酸當作電解液,在矽基板上自製兩種不同尺寸的多孔陽極氧化鋁(AAO)模板,孔洞半徑分別約在50~90 nm和110~180 nm之間,並利用多孔氧化鋁模板來合成合成鋯鈦酸鉛 (Pb(ZrTi)O3, PZT) 鐵電奈米管陣列。為了探討鐵電管陣列的奈米鐵電特性,本研究在陽極氧化鋁與矽基板之間鍍上Pt與Ti來作為電性量測的底電極。利用兩種不同尺寸模板合成的鐵電奈米管陣列均為多晶結構,奈米管直徑範圍分別約為45~75 nm與100~150 nm左右。在掃描探針顯微鏡直接的觀察下顯示,奈米管的幾何尺寸對鐵電性質的影響主要藉由局部晶相的改變。草酸AAO所製奈米管中,管直徑越小時極化強度越強,且單一管內晶軸方向偏離較小,電域分布單純,多為90度或180度的雙電域結構。磷酸AAO之鐵電奈米管直徑在100 nm以上時,管內為隨意多晶結構,電性與壓電特性受局部晶軸方向主導,c軸方向若垂直外加電場方向將使的極化量較小,矯頑場較大且局部壓電特性較弱。
In this study, the electric polarization properties of ferroelectric nanotubes were investigated. Anodic aluminum oxide (AAO) templates with two different diameters were obtained by using H2C2O4 and H3PO4 electrolyte. The diameters of the holes are about 50~90 nm and 110~180 nm for H2C2O4 and H3PO4, respectively.。Pb(ZrTi)O3, PZT, nano-tube array were synthesized based on these templates. To systematically measure the ferroelectric properties of the nanotubes, the AAO films were specially designed to grow on Pt/Ti. The ferroelectric tubes obtained by the template method were polycrystalline, and their diameters are of 45~75 nm and 100~150 nm. By using the scanning probe microscope, the ferroelectric domain can be in-situ observed, which shows the geometrical effects on the ferroelectric properties were mainly through the crystalline phase. For nanotubes synthesized in H2C2O4-prepared AAO, the polarization increases with narrowing diameters. The electric domains distribute simply, and are mainly 90 or 180 degree domains. In comparison, the grains of nanotubes synthesized in H3PO4-prepared AAO are randomly oriented. In this case, the local electric properties are dominated by the easy axis of polarization. The c-axis oriented grains posses lower polarization, higher coercive fields, and smaller piezoelectric coefficients.
1. Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, “An introduction to the physics of ferroelectrics”, Gordon and Breach Science Publishers, New York, (1976).
2. Kenji Uchino, “Ferroelectric Devices”, Marcel Dekker, Inc., New York, (2000).
3. Berdard Jaffe, William R. Cook and Hans Jaffe, “Piezoelectric Ceramics”, Academic Press Inc., London, (1970).
4. William D. Callister, Jr., “Materials Science And Engineering”, John Wiley &Sons Inc., 3th, Canada, (1994).
5. 鐘維烈, “鐵電體物理學”, 科學出版社, (2000).
6. Patrycja Paruch, Thierry Giamarchi, Thomas Tybell and Jean-Marc Triscone, “Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films”, American Physical Society, APS March Meeting, March, pp.21-25, (2005).
7. Yuhuan. Xu, “Ferroelectric Material and Their Applications”, Elsevier, Amsterdam, (1991).
8. Ian M. Reaney, Enrico L. Colla and Nava Setter, “Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor”, Jpn. J. Appl., Vol. 33, pp. 3984-3990, (1994).
9. Norman W. Schubring, Joseph V. Mantese, Adolph L. Micheli, Antonio B. Catalan, and Richard J. Lopez, “Charge Pumping And Pseudopyroelectric Effect In Active Ferroelectric Relaxor-Type Films”, Phys. Rev. Lett., Vol.65, p.1778, (1992).
10. A. J. Moulson and J. M. Herbert, “Electroceramics Materials Properties Applications”, Chapman&Hall, New York, (1990).
11. J. Schaefer, W. Sigmund, S. Roy and F. Aldinger, “Low temperature synthesis of ultrafine Pb(Zr,Ti)O3 powder by sol-gel combustion”, Journal of Materials Reasearch, Vol.12, No.10, pp.2518-2521, (1997).
12. R. E. Newnham and L. E. Cross, “Effect of elastic boundary conditions on morphotropic Pb(Zr,Ti)O3 piezoelectrics”, Phys. Rev. B, Vol.34, p.1595, (1986).
13. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, “7 × 7 Reconstruction on Si(111) Resolved in Real Space”, Phys Rev. Lett, Vol.49, p.57-61, (1982).
14. G. Binnig, C. F. Quate and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett. Vol.56, p.930-933 (1986).
15. Sergei N. Magonov and Myung-Hwan Whangbo, “Surface analysis with STM and AFM : experimental and theoretical aspects of image analysis”, Weinheim ; New York : VCH, (1996).
16. S.-D. Tzeng, C.-L. Wu, Y.-C. You, T. T. Chen and S. Gwo, “Charge imaging and manipulation using carbon nanotube probes”, Appl. Phys. Lett., Vol.81, No.23, (2003).
17. Long Ba, Jian Shu, Zhung Lu, Juntao Li, Wei Lei, Baoping Wang and Waisang Li, “Probing local electric field distribution of nanotube arrays using electrostatic force microscopy”, J. Appl. Phys., Vol.93, No.12, (2003).
18. P. Guthner and K. Dransfeld, “Local poling of ferroelectric polymers by scanning force microscopy”, Appl. Phys. Lett., Vol.61, pp.1137-1139, (1992).
19. M. Abplanalp, L.M. Eng and P. Günter, “Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy”, Appl. Phys. A, Vol.66, pp.s231-s234, (1998).
20. M. Alexe and A. Gruverman, “Nanoscale Characterisation of Ferroelectric Materials-Scanning Probe Microscopy Approach”, Springer, (2004).
21. H. Chen, R. G. Downing, “Guiding and focusing neutron beams using capillary optics”, Nature, 357, 391-393, (1992).
22. R. J. Tonucci, B. L. Justus, “Nanochannel array glass”, Science, 258(30), 783-785, (1992).
23. H. Masuda, K. Fukuda, “Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina”, Science, 268, 1466-1471, (1995).
24. A. P. Li, F. Mu¨ller, A. Birner, K. Nielsch, and U. Go¨sele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, J Appl. Phys, 84, 6023, (1998).
25. A.P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina”, Adv. Mat. 11, 483-487,(1999).
26. Tsai-Yu Cheng, “Study of nano-scaled alumina template mask by using self-assembly anodic oxidation method”, 國立暨南國際大學電機工程研究所碩士論文, 2003年。
27. Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask” Appl. Phys. Lett. 78, 142-143,(2001).
28. Dmitri Routkevitch, Alexander N. Govyadinov and Peter P. Mardilovich, “High aspect ratio, High resolution ceramic MEMS”, MEMS. 2, 39, (2000).
29. G.E. Thompson, “Porous anodic alumina : fabrication, characterization and applications,” Thin solid films. 297, 192, (1997).
30. Jessensky, F. Muller, U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina” Appl. Phys. Lett. 72, 1173, (1998).
31. K. Lee, H. Shin, W. K. Moon, J. U. Jeon and Y. E. Pak, “Detection Mechanism of Spontaneous Polarization in Ferroelectric Thin Films Using Electrostatic Force Microscopy”, Jpn. J. Appl. Phys. Vol.38, No.3A, pp.L264 –L266, (1999).
32. Chia-Hui Chueh, “Studies of PZT thin films by variable-temperature piezoresponse force microscopy”, 國立清華大學物理研究所碩士論文,2003年。
33. H. N. Lin, S. H. Chen, S. T. Ho, P. R. Chen, and I. N. Lin, “Comparative measurements of the piezoelectric coefficient of a lead zirconate titanate film by piezoresponse force microscopy using electrically characterized tips”, J. Vac. Sci. Technol., B 21, pp.916-918, (2003).
34. Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham and Hongkun Park, “Fabry-Perot interference in a nanotube electron waveguide”, Nature, Vol.411, p.665, (2001).
35. Yun Luo, Izabela Szafraniak, Nikoiai D. Zakharon, Valanoor Nagarajan, “Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate”, Appl. Phys. Lett., Vol.83, No.3, pp.440-442, (2003).
36. T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen and T. P. Russell, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates”, Science, Vol.290, p.2126, (2000).
37. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo and Peidong Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, Vol.292, p.1897, (2001).
38. Yi Cui and Charles M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”, Science, Vol.291, p.851, (2001).
39. Charles R. Martin, “Template Synthesis of Elevtronically Conductive Polymer Nanostructures”, Acc. Chem. Res., Vol.28, pp.61-68, (1995).
40. M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi and U. Go¬sele, “Polymer Nanotubes by Wetting of Ordered Porous Templates”, SCIENCE, Vol.296, p.1997, (2002).
41. Catalin Harnagea, Marin Alexe, Jo¨ rg Schilling, Jinsub Choi, Ralf B. Wehrspohn, Dietrich Hesse and Ulrich Go¨sele, “Mesoscopic ferroelectric cell arrays prepared by imprint lithography”, Appl. Phys. Lett., Vol.83, pp.1827-1829, (2003).
42. Brinda B. Lakshmi, Charies J. Patrissi, and Charles R. Martin, “Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures”, Chem. Mater., Vol.9, pp.2544-2550, (1997).
43. John C. Hulteen and Charles R. Martin, “Ageneral template-based method for the preparation of nanomaterials”, J. Mater. Chem., Vol.7, pp.1075-1087, (1997).
44. R.B. Wehrspohn and J. Schilling, “Electrochemically Prepared Pore Arrays for Photonic-Crystal Applications”, MRS Bull., Vol. 8, pp.623, (2001).
45. S. F. Kistler, “Surfactant Science Series”, Dekker, Vol.49, chap.6, New York, (1993).
46. Wan Soo Yun, Jeffrey J. Urban, Qian Gu, and Hongkun Park, “Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy”, Nano Lett., Vol.2, No.5, pp .447-450, (2002).
47. Catalin Harnagea, Marin Alexe, Jörg Schilling, Jinsub Choi, Ralf B. Wehrspohn, Dietrich Hesse, and Ulrich Gösele, “Mesoscopic ferroelectric cell arrays prepared by imprint lithography”, Appl. Phys. Lett., Vol.83, pp.1827-1827, (2003).
48. R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, “Surface and domain structures of ferroelectric crystals studied with scanning force microscopy”, J. Appl. Phys., Vol.74, No.12, (1993).
49. Seungbum Hong and Jungwon Woo, “Principle of ferroelectric domain imaging using atomic force microscope”, J. Appl. Phys., Vol. 89, No.2, (2001).
50. V. Nagarajan, S. Aggarwal, A. Gruverman, R. Ramesh, and R. Waser, “Nanoscale polarization relaxation in a polycrystalline ferroelectric thin film: Role of local environments”, Appl. Phys. Lett. 86, 262910, (2005).