| 研究生: |
王維駿 Wang, Wei-Chun |
|---|---|
| 論文名稱: |
經由醋酸錳(III)的氧化性自由基反應或1,8-二氮雜二環[5.4.0]十一碳-7-烯的離子性反應合成2-喹啉酮衍生物 Synthesis of 2-Quinolinone Derivatives via Manganese(III) Acetate Mediated Oxidative Free Radical Reaction and 1,8-Diazabicyclo[5.4.0]undec-7-ene Mediated Ionic Reaction |
| 指導教授: |
莊治平
Chuang, Che-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 自由基 、喹啉酮 、醋酸錳 、1,8-二氮雜二環[5.4.0]十一碳-7-烯 |
| 外文關鍵詞: | manganese acetate, free radical, 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近四十年來,自由基反應不斷被許多研究者討論,利用自由基與不飽和鍵的反應,已經成為合成多環化合物的重要方法之一,以過渡金屬鹽類進行氧化性自由基反應,是其中很常使用的一種方式,在常見Pd(IV)、Cu(II)、Ce(IV)、Mn(III)等金屬鹽中,Mn(III)有非常廣泛的應用。
本文主要分為三個部分:第一部分是使用過量醋酸錳(III)搭配氧氣,進行N-(2’-苯乙炔基)-醯胺類化合物的氧化性自由基反應,合成4-醯基-2-喹啉酮;第二部分為用少量醋酸錳(III)搭配少量醋酸鈷(II)與氧氣,進行N-(2’-苯乙炔基)-醯胺類化合物的氧化性自由基反應,合成4-醯基-2-喹啉酮;第三部分則欲用過渡金屬搭配鹼進行N-(2’-二苯基炔基)-醯胺類化合物的自由基反應,但意外發現不須金屬催化劑,僅用鹼就能反應得到4-苄基-2-喹啉酮,並對其進行探討。
SUMMARY
Oxidative free radical reactions catalyzed by manganese(III) or manganese(III) combined with cobalt(II) is simple, convenient, and effective methods for the synthesis of 4-acyl-2-quinolinone derivative from N-(2- ethynylphenyl)acetamide derivative. In the first chapter, Oxidative free radical reaction is derived by excess manganese(III) acetate and oxygen. In the second chapter, small amount manganese(III) acetate and cobalt(II) acetate used with oxygen to produce 2-quinolionone, satisfying the environmental consideration.
In the third chapter, N-(2-(phenylethynyl)phenyl)acetamide derivative could reaction in the metal-free condition, and produce 4-benzyl-quinolinone derivative with high efficiency when 1,8-Diazabicyclo[5.4.0]undec-7-ene is used. When copper catalysis added, reaction also produce 4-benzyl-quinolinone derivative.
INTRODUCTION
In the nature products and bioactive material, 2-Quinolinone is an important basic skeleton, as it exhibit special bioactivity and pharmacological activity, including anticancer, antibiotic, and other activities, the preparation of this valuable compound has attracted lot of interest. Methods of 2-Quinolinone synthesizing include the acid-catalyzed synthesis, base-catalyzed synthesis, metal-catalyzed synthesis and nonmetal-catalyzed synthesis. Most of the metal-catalyzed synthesis via an ionic route, but radical route is potential with its special property.
In recent years, radical reactions have played an important role in organic synthesis, especially in using radical with the unsaturated bonds is considered to be a very powerful way for the synthesis of polycyclic compounds. In this decade, oxidative free radical reactions of unsaturated system:1,3-dicarbonyl compounds, with transition metal salts (Mn (III), Co (II), Ce (IV), etc.) has been widely applied, in which manganese(III) acetate is most widely used.
In our laboratory previous studies, we have an in depth discussion on synthesis of heterocyclic compounds via manganese(III) acetate mediated oxidative radical reactions. In this thesis, manganese(III) acetate is used to synthesize 2-quinolinone derivative via oxidative free radical reactions. To improve the yield of 2-quinolinones, we optimized the reaction conditions, a number of different functional groups display the general purpose applicability of this reaction. Furthermore the second chapter significantly reduces the usage amount of transition metal compares with the first chapter, the reaction is also applicable to a variety of functional groups of 2-quinolinone compounds.
In the third chapter, metal-free, base-catalyzed synthesis of 2-quinolinone derivative was discovered unexpectedly. 1,8-Diazabicyclo[5.4.0]undec-7-ene and the acidic of reactant push the reaction forward and obtain different product from previous chapter with high efficiency. When copper metal catalysis added, reaction also produces the same final products.
RESULTS AND DISCUSSION
The first chapter: synthesizing 2-quinolinone compounds with an excess amount of manganese(III) acetate and oxygen, R6 functional group contains ester group (CO2Me), benzoyl group (COPh), cyano group (CN). The results show that this method for 4-acyl-2-quinolinone with a variety of substituents has good effects. Yields:ester group (60-92%), cyano group (57-67%), benzoyl group (43-47%).
Furthermore, the R4 substituent and the methyl group on R1, 8th position of 2-quinolinone compounds lead to the yield changes are due to the balance in syn form and anti form of the radical intermediate cause by steric effects. When R1 = H, R2 = H, anti form increase, the yield decrease; when R1 = H, R2 = benzyl, syn form increase, the yield increase; when R1 = methyl, R2 = H, syn form increase, the yield increase; when R1 = methyl, R2 = benzyl, anti form increase, the yield decrease.
The second part of the results show that adding cobalt acetate (II) and oxygen, manganese In the second chapter, while small amount of cobalt(II) acetate is added to the reaction with oxygen, manganese(III) acetate can be reduced to low amount, and the reactions also complete with good yields:ester group (74-93%), cyano group (58-61%), benzoyl group (48%). Besides the case with cyano group as R6 takes 16 hours, reactions are finished within one hour.
That 1,8-Diazabicyclo[5.4.0]undec-7-ene could be a key reagent to the produce of 2-quinolinone derivatives is showed in third chapter; with the adjusted reaction temperature(60-100℃) , most of reactions could be done in short time and excellent yield while R4 is benzyl group; with lower yield in previous chapter, when R6 is benzoyl, the better results are showed with mild condition; reaction could produces the same products to previous two chapter with the copper catalysis attend, improving the disadvantage in previous works.
CONCLUSION
Synthesis of 2-quinolinone from N-(2- ethynylphenyl)acetamide derivatives could be completed satisfactorily via manganese(III) acetate mediated oxidative free radical or 1,8-Diazabicyclo[5.4.0]undec-7-ene mediated ionic route; 4-acyl-2-quinolinone derivatives are obtained with the oxidative free radical reaction, usage amount of manganese(III) acetate could be reduced with cobalt(II) acetate and completed in shorter reaction time; 4-benzyl-2- quinolinone derivatives are produced with base mediated ionic reaction, both route shows broad tolerance of a variety of substituent groups, providing a variety way to achieve the 2-quinolinone derivative.
1. Leeson , P. D.; Baker, R.; Carling, R. W.; Kulagowski, J. J.; Mawer, I. M.; Ridgill, M. P.; Rowley, M.; Smith, J. D.; Stansfield, I.; Stevenson, G. I.; Foster, A. C.; Kemp, J. A. Bioorg. Med. Chem. Lett. 1993, 3, 299.
2. Zhong, W.; Liu, H.; Kaller, M. R.; Henley, C.; Magal, E.; Nguyen, T.; Osslund, T. D.; Powers, D.; Rzasa, R. M. Wang, H. -L.;Wang, W.; Xiaoling, X.; Norman, M. H. Bioorg. Med. Chem. Lett. 2007, 17, 5384.
3. Joseph, B.; Darro, F.; Béhard, A., Lesur, B.; Collignon, F.; Decaestecker, C.; Frydman A, Guillaumet, G.; Kiss, R. J. Med. Chem. 2002, 45, 2543.
4. Chung, H.J.; Kamli, M. R.; Lee, H.J.; Ha, J.D.; Cho, S.Y.; Lee, J.; Kong, J.Y.; Han, S. -Y. Biochem. Biophys. Res. Commun. 2014, 445, 561
5. Simonsson, B.; Tötterman, T.; Hokland, P.; Lauria, F.; Carella, A. M.; Fernandez, M. N.; Rozman, C.; Ferrant, A.; de Witte, T.; Zander, A. R.; Meier, K.; Hansson, F.; Nilsson, B.I. Bone Marrow Transplant 2000, 25, 121.
6. Vuanovic, J.; Isaacs, J. T. Cancer Res. 1995, 55, 1499.
7. Bergh, J. C. S.; Tötterman, T. H.; Termander, B. C.; Sc., M.; Gunnarsson, P. O. G.; Nilsson, B. I. Cancer Invest. 1997, 15, 204.
8. Mackean, M. J.; Kerr, D.; Lesko, M.; Svedberg, A.; Hansson, F.; Jodrell, D.; Cassidylt, J. Br. J. Cancer 1998, 78, 1620.
9. Claassen, G.; Brin, E.; Crogan-Grundy, C.; Vaillancourt, M. T.; Zhang, H. Z.; Cai, S. X.; Drewe, J.; Tseng, B.; Kasibhatla, S. Cancer Lett. 2009, 274, 243.
10. Knorr, L. Justus Liebigs Ann. Chem. 1886, 236, 69.
11. Solingapuran Sai, K. K.; Gilbert, T. M.; Klumpp, D. A. J. Org. Chem. 2007, 72, 9761.
12. Fehnel, E. A. J. Heterocycl. Chem. 1967, 4, 565.
13. Jia, C.; Piao, D.; Kitamura, T.; Fujiwara, Y. J. Org. Chem. 2000, 65, 7516.
14. Manley, P. J.; Bilodeau, M. T. Org. Lett. 2004, 6, 2433.
15. Huang, C. -C.; Chang, N. -C. Org. Lett. 2008, 10, 673.
16. Arya, K.; Agarwal, M. Bioorg. Med. Chem. Lett. 2007, 17, 86
17. Tadd, A. C.; Matsuno, A.; Fielding, M.; Willis, M. C. Org. Lett. 2009, 11, 583.
18. Nakai, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 856.
19. Inamoto, K.; Saito, T.; Hiroya, K.; Doi, T. J. Org. Chem. 2010, 75, 3900.
20. Xie, P. J.; Wang, Z. -Q.; Deng, G. -B.; Song, R. -J.; Xia, J. -D.; Hu, M.; Li, J. -H. Adv. Synth. Catal. 2013, 355, 2257.
21. Bush, J. B., Jr.; Finkbeiner, H. J. Am. Chem. Soc. 1968, 90, 5903.
22. Heiba, E. I.; Dessau, R. M.; Koehl W. J. Jr. J. Am. Chem. Soc. 1968, 90, 5905.
23. Heiba, E. I. ; Dessau, R. M.; Koehl W. J. Jr. J. Am. Chem. Soc. 1974, 39, 3456
24. Mohan, R., Kates, S. A., Snider, B. B. J. Org. Chem. 1985, 50, 3659.
25. Snider, B. B., Dombroski, M. A. J. Org. Chem. 1987, 52, 5487.
26. Iwahama, T.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, 23, 2317
27. Chuang, C. -P.; Wang, S. -F. Tetrahedron Lett. 1994, 35, 4365.
28. Chuang, C. -P.; Wang, S. -F. Tetrahedron 1998, 54, 10043.
29. Wu, Y. -L.; Chuang, C. -P.; Lin, P. -Y. Tetrahedron 2000, 56, 6209.
30. Tseng, C. -M., Wu, Y. -L., Chuang, C. -P. Tetrahedron 2004, 60, 12249.
31. Adimurthy, S.; Ramachandraiah, G.; Ghosh. P. K.; Bedekar, A. V. Tetrahedron Lett. 2003, 44, 5099.
32. Borch, R. F.; Bernstein, M. D.; Dupont Durst H. J. Am. Chem. Soc. 1971, 93, 2897.
33. 林建安, 國立成功大學化學研究所碩士論文, 2014.
34. 吳家諺, 國立成功大學化學研究所碩士論文, 2012.
35. 蔡佩如, 國立成功大學化學研究所碩士論文, 2013.
36. 呂政彥, 國立成功大學化學研究所碩士論文, 2014.
校內:2016-07-21公開