| 研究生: |
張奕智 Chang, Yi-Chih |
|---|---|
| 論文名稱: |
3D列印蜂窩夾層結構添加連續增強纖維複合材料的吸收衝擊能力性質探討 Investigating the impact-absorbing properties of 3D printed honeycomb sandwich structures with continuous reinforced fiber composites |
| 指導教授: |
鄭友仁
Jeng, Yeau-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 微型碳纖維尼龍 、連續碳纖維 、克維拉 、蜂窩夾層結構 、熔融沉積成型 |
| 外文關鍵詞: | onyx, continue carbon fiber, fusion deposition modeling, honeycomb sandwich structure, kevlar |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業上追求快速及輕量化結構漸成趨勢,其中比金屬材料輕且具有一定強度的複合材料是發展的重點。帶有蜂窩狀的夾層結構,以優異的能量吸收能力而備受關注,廣泛用於衝擊情況下的能量吸收應用,其中,抗衝擊能力是夾層結構的關鍵指標。然而,蜂窩夾層結構常用材料為金屬,但其製造過程繁瑣、成本高且損壞時較不易修復。而熔融沉積成型(Fused Deposition Modeling, FDM) 積層列印熱塑性聚合物可以改善此問題,並且在基質聚合物上添加連續增強纖維製成夾層結構可以實現強度及複雜結構設計。基質聚合物選用微型碳纖維尼龍(Onyx),除了能製造尺寸精度準確的零件,其成本也低於金屬材料。此外,添加連續碳纖維、克維拉後,前者具備高硬度,達到媲美鋁合金強度之零件,後者具備極佳的抗拉性能,能有效吸收衝擊,可以依據不同使用情形下提供不同選擇。
因此,本研究聚焦於利用熔融沉積成型(FDM)技術製作以Onyx材料為基底,並添加不同層數連續碳纖維與克維拉纖維的蜂窩夾層結構,探討20mm、15mm蜂窩晶格尺寸與纖維層數含量對結構衝擊性能的影響。透過落槌衝擊試驗,選用500焦耳、100焦耳能量,評估蜂窩夾層結構在不同衝擊能量下的反應,並比較連續纖維種類、層數、晶格大小的性能差異。最後用有限元素分析建立靜態分析,觀察結構以及材料種類在受到力時的等效應力分布及變形量。
實驗結果顯示,蜂窩晶格尺寸對結構衝擊力學行為影響顯著,20mm晶格呈現較高峰值力及明顯應力集中,而15mm晶格則展現較為均勻的力分散與能量吸收能力。連續纖維層數增加確實提升峰值力,但在纖維層數達一定數量後,碳纖維與克維拉的性能差異趨於平緩。此外,連續碳纖維樣品初期反應力較克維拉強,但克維拉因其韌性在衝擊後段表現出更佳的能量吸收與延展性能。
In the industry, there is an increasing trend toward the pursuit of rapid and lightweight structural solutions, with composite materials—lighter than metals yet possessing a certain level of strength—becoming a key focus of development. Honeycomb sandwich structures have garnered considerable attention due to their exceptional energy absorption capabilities and are widely used in applications that require impact energy absorption. Among these, impact resistance is a critical performance indicator for sandwich structures. However, honeycomb sandwich structures are commonly made of metals, which involve complex manufacturing processes, high costs, and increased difficulty in repair when damaged. Fused Deposition Modeling (FDM) additive manufacturing of thermoplastic polymers offers a potential solution to these issues. Furthermore, incorporating continuous reinforcement fibers into the polymer matrix enables the production of sandwich structures with both high strength and complex geometries. In this study, Onyx was selected as the matrix polymer, as it not only allows for the fabrication of dimensionally accurate parts but also offers a lower cost compared to metal materials. The addition of continuous carbon fiber and Kevlar provides distinct advantages: the former delivers high rigidity and strength comparable to that of aluminum alloys, while the latter offers excellent tensile performance and effective impact absorption, providing material options tailored to different application requirements.
This study focuses on using FDM technology to fabricate honeycomb sandwich structures with Onyx as the matrix material, incorporating varying numbers of Continuous Carbon Fiber and Kevlar layers. The effects of honeycomb lattice sizes (20 mm and 15 mm) and fiber layer counts on the impact performance of the structure were investigated. Drop-weight impact tests were conducted at energy levels of 500 J and 100 J to evaluate the response of the honeycomb sandwich structures under different impact energies and to compare performance differences among fiber types, layer counts, and lattice sizes. Finally, a static analysis was conducted using finite element analysis to observe the equivalent stress distribution and deformation of the structure and material type under applied loading.
The experimental results indicate that the size of the honeycomb lattice has a significant impact on its structural and mechanical behavior. The 20 mm lattice exhibited a higher peak force and more pronounced stress concentration, while the 15 mm lattice demonstrated a more uniform load distribution and improved energy absorption capability. Increasing the number of continuous fiber layers enhanced the peak force; however, once the fiber layer count reached a certain level, the performance differences between Continuous Carbon Fiber and Kevlar began to level off. Additionally, the Continuous Carbon Fiber sample showed stronger initial reaction forces compared to Kevlar; however, due to its toughness, Kevlar demonstrated superior energy absorption and ductility in the later stages of the impact.
[1] Castanie, B.; Bouvet, C.; Ginot, M. Review of composite sandwich structure in aeronautic applications. Composites Part C: Open Access 2020, 1, 100004. DOI: https://doi.org/10.1016/j.jcomc.2020.100004.
[2] Acanfora, V.; Sellitto, A.; Russo, A.; Zarrelli, M.; Riccio, A. Experimental investigation on 3D printed lightweight sandwich structures for energy absorption aerospace applications. Aerospace Science and Technology 2023, 137, 108276. DOI: https://doi.org/10.1016/j.ast.2023.108276.
[3] Seharing, A.; Azman, A. H.; Abdullah, S. A review on integration of lightweight gradient lattice structures in additive manufacturing parts. Advances in Mechanical Engineering 2014, 12 (6), 1687814020916951. DOI: 10.1177/1687814020916951.
[4] Wei, X.; Xiong, J.; Wang, J.; Xu, W. New advances in fiber-reinforced composite honeycomb materials. Science China Technological Sciences 2020, 63 (8), 1348-1370. DOI: 10.1007/s11431-020-1650-9.
[5] Lu, G.; Yu, T. Energy absorption of structures and materials; Elsevier, 2003.
[6] Liu, S.; Zhang, Y.; Liu, P. New analytical model for heat transfer efficiency of metallic honeycomb structures. International Journal of Heat and Mass Transfer 2008, 51 (25), 6254-6258. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.055.
[7] Queheillalt, D. T.; Wadley, H. N. G. Titanium alloy lattice truss structures. Materials & Design 2009, 30 (6), 1966-1975. DOI: https://doi.org/10.1016/j.matdes.2008.09.015.
[8] Rodriguez-Ramirez, J. d. D.; Castanie, B.; Bouvet, C. Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core: Application to insert sizing. Composite Structures 2018, 193, 121-139. DOI: https://doi.org/10.1016/j.compstruct.2018.03.076.
[9] Toribio, M. G.; Spearing, S. M. Compressive response of notched glass-fiber epoxy/honeycomb sandwich panels. Composites Part A: Applied Science and Manufacturing 2001, 32 (6), 859-870. DOI: https://doi.org/10.1016/S1359-835X(00)00150-0.
[10] Naveed, N. Effect of Continuous Carbon Fiber Reinforcement on the Tensile Properties of Onyx Components Printed by Fused Deposition Modelling (FDM) Technology. 2023.
[11] Yap, Y. L.; and Yeong, W. Y. Shape recovery effect of 3D printed polymeric honeycomb. Virtual and Physical Prototyping 2015, 10 (2), 91-99. DOI: 10.1080/17452759.2015.1060350.
[12] He, W.; Yao, L.; Meng, X.; Sun, G.; Xie, D.; Liu, J. Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets. Thin-Walled Structures 2019, 137, 411-432. DOI: https://doi.org/10.1016/j.tws.2019.01.022.
[13] Partovi Meran, A.; Toprak, T.; Muğan, A. Numerical and experimental study of crashworthiness parameters of honeycomb structures. Thin-Walled Structures 2014, 78, 87-94. DOI: https://doi.org/10.1016/j.tws.2013.12.012.
[14] Wang, F.; Ming, Y.; Yang, F.; Xiao, H.; Liu, T.; Zhang, C.; Zhu, Y.; Wang, J.; Duan, Y.; Wang, B. Improving delamination resistance of 3D printed continuous fiber-reinforced thermoset composites by multi-scale synergistic toughening of mono-component polyetherketone-cardo. Composites Science and Technology 2024, 245, 110358. DOI: https://doi.org/10.1016/j.compscitech.2023.110358.
[15] Vasudevan, A.; Pandiyarajan, R.; Navin Kumar, B.; Vijayarangam, J. Effect of Kevlar Ply Orientation on Mechanical Characterization of Kevlar-Glass Fiber Laminated Composites. IOP Conference Series: Materials Science and Engineering 2020, 988 (1), 012088. DOI: 10.1088/1757-899X/988/1/012088.
[16] Beharic, A.; Rodriguez Egui, R.; Yang, L. Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs. Materials & Design 2018, 145, 122-134. DOI: https://doi.org/10.1016/j.matdes.2018.02.066.
[17] Feng, Y.; Qiu, H.; Gao, Y.; Zheng, H.; Tan, J. Creative design for sandwich structures: A review. International Journal of Advanced Robotic Systems 2020, 17 (3), 1729881420921327. DOI: 10.1177/1729881420921327 (acccessed 2025/04/15).
[18] Onyibo, E. C.; Safaei, B. Application of finite element analysis to honeycomb sandwich structures: a review. Reports in Mechanical Engineering 2022, 3 (1), 283-300. DOI: 10.31181/rme20023032022o.
[19] Zhang, Q.; Yang, X.; Li, P.; Huang, G.; Feng, S.; Shen, C.; Han, B.; Zhang, X.; Jin, F.; Xu, F.; et al. Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation. Progress in Materials Science 2015, 74, 332-400. DOI: https://doi.org/10.1016/j.pmatsci.2015.05.001.
[20] Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W. S. W.; Rahman, M. M. Fused deposition modeling: process, materials, parameters, properties, and applications. The International Journal of Advanced Manufacturing Technology 2022, 120 (3-4), 1531-1570. DOI: 10.1007/s00170-022-08860-7.
[21] Chang, B.; Wang, Z.; Bi, G. Study on the Energy Absorption Characteristics of Different Composite Honeycomb Sandwich Structures under Impact Energy. In Applied Sciences, 2024; Vol. 14.
[22] Thomas, T.; and Tiwari, G. Crushing behavior of honeycomb structure: a review. International Journal of Crashworthiness 2019, 24 (5), 555-579. DOI: 10.1080/13588265.2018.1480471.
[23] Xie, S.; Jing, K.; Zhou, H.; Liu, X. Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact. Composite Structures 2020, 235, 111814. DOI: https://doi.org/10.1016/j.compstruct.2019.111814.
[24] Al-Khazraji, M. S.; Bakhy, S. H.; Jweeg, M. J. Composite sandwich structures: review of manufacturing techniques. Journal of Engineering, Design and Technology 2023, 22 (5), 1616-1636. DOI: 10.1108/jedt-03-2022-0141.
[25] Swamidass, P. M.; and Winch, G. W. Exploratory study of the adoption of manufacturing technology innovations in the USA and the UK. International Journal of Production Research 2002, 40 (12), 2677-2703. DOI: 10.1080/00207540210137549.
[26] Watson, J. K.; Taminger, K. M. B. A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption. Journal of Cleaner Production 2018, 176, 1316-1322. DOI: https://doi.org/10.1016/j.jclepro.2015.12.009.
[27] Balatsky, A. V.; Balatsky, G. I.; Borysov, S. S. Resource Demand Growth and Sustainability Due to Increased World Consumption. In Sustainability, 2015; Vol. 7, pp 3430-3440.
[28] Jamshid, M. Wohlers Report 2025 shows 9.1% AM industry growth. 2025.
[29] Savaliya, J.; Parikh, H.; Sidapara, A.; Gosai, K. 3D Printing Technology: A Future Perspective; 2021.
[30] Wong, K. V.; Hernandez, A. A Review of Additive Manufacturing. International Scholarly Research Notices 2012, 2012 (1), 208760. DOI: https://doi.org/10.5402/2012/208760 (acccessed 2025/04/16).
[31] Verma, A.; Kapil, A.; Klobčar, D.; Sharma, A. A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure. Materials (Basel) 2023, 16 (15). DOI: 10.3390/ma16155246 From NLM.
[32] Mohamed, O. A.; Masood, S. H.; Bhowmik, J. L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing 2015, 3 (1), 42-53. DOI: 10.1007/s40436-014-0097-7.
[33] Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. In Polymers, 2020; Vol. 12.
[34] Mwema, F. M.; Akinlabi, E. T. Basics of Fused Deposition Modelling (FDM). In Fused Deposition Modeling: Strategies for Quality Enhancement, Mwema, F. M., Akinlabi, E. T. Eds.; Springer International Publishing, 2020; pp 1-15.
[35] Nguyen-Van, V.; Peng, C.; Tran, P.; Wickramasinghe, S.; Do, T.; Ruan, D. Mechanical and dynamic performance of 3D-printed continuous carbon fibre Onyx composites. Thin-Walled Structures 2024, 201, 111979. DOI: https://doi.org/10.1016/j.tws.2024.111979.
[36] Ge, J.; Catalanotti, G.; Falzon, B. G.; Higgins, C.; McClory, C.; Thiebot, J.-A.; Li, Z.; He, M.; Jin, Y.; Sun, D. Process characteristics, damage mechanisms and challenges in machining of fibre reinforced thermoplastic polymer (FRTP) composites: A review. Composites Part B Engineering 2024. DOI: 10.1016/j.compositesb.2024.111247.
[37] Alshammari, B. A.; Alsuhybani, M. S.; Almushaikeh, A. M.; Alotaibi, B. M.; Alenad, A. M.; Alqahtani, N. B.; Alharbi, A. G. Comprehensive Review of the Properties and Modifications of Carbon Fiber-Reinforced Thermoplastic Composites. In Polymers, 2021; Vol. 13.
[38] Jiang, L.; Zhou, Y.; Jin, F. Design of short fiber-reinforced thermoplastic composites: A review. Polymer Composites 2022, 43 (8), 4835-4847. DOI: https://doi.org/10.1002/pc.26817 (acccessed 2025/04/18).
[39] Safari, F.; Kami, A.; Abedini, V. 3D printing of continuous fiber reinforced composites: A review of the processing, pre- and post-processing effects on mechanical properties. Polymers and Polymer Composites 2022, 30, 09673911221098734. DOI: 10.1177/09673911221098734 (acccessed 2025/04/19).
[40] Isobe, T.; Tanaka, T.; Nomura, T.; Yuasa, R. Comparison of strength of 3D printing objects using short fiber and continuous long fiber. IOP Conference Series: Materials Science and Engineering 2018, 406 (1), 012042. DOI: 10.1088/1757-899X/406/1/012042.
[41] Jiang, L.; Zhou, Y.; Jin, F. Design of short fiber‐reinforced thermoplastic composites: A review. Polymer Composites 2022, 43. DOI: 10.1002/pc.26817.
[42] Sayam, A.; Rahman, A. N. M. M.; Rahman, M. S.; Smriti, S. A.; Ahmed, F.; Rabbi, M. F.; Hossain, M.; Faruque, M. O. A review on carbon fiber-reinforced hierarchical composites: mechanical performance, manufacturing process, structural applications and allied challenges. Carbon Letters 2022, 32 (5), 1173-1205. DOI: 10.1007/s42823-022-00358-2.
[43] Papa, I.; Silvestri, A. T.; Ricciardi, M. R.; Lopresto, V.; Squillace, A. Effect of Fibre Orientation on Novel Continuous 3D-Printed Fibre-Reinforced Composites. In Polymers, 2021; Vol. 13.
[44] Lee, G.-W.; Kim, T.-H.; Yun, J.-H.; Kim, N.-J.; Ahn, K.-H.; Kang, M.-S. Strength of Onyx-based composite 3D printing materials according to fiber reinforcement. Frontiers in Materials 2023, 10. DOI: 10.3389/fmats.2023.1183816.
[45] Vedrtnam, A.; Ghabezi, P.; Gunwant, D.; Jiang, Y.; Sam-Daliri, O.; Harrison, N.; Goggins, J.; Finnegan, W. Mechanical performance of 3D-printed continuous fibre Onyx composites for drone applications: An experimental and numerical analysis. Composites Part C: Open Access 2023, 12, 100418. DOI: https://doi.org/10.1016/j.jcomc.2023.100418.
[46] Ghebretinsae, F. Mechanical testing and finite element analysis Of 3D printed continuous carbon fiber reinforced Onyx® thermoplastic. University of Stavanger, Norway, 2019.
[47] Ojha, K. K.; Gaurav, G.; and Francis, V. Tensile properties and failure behaviour of continuous kevlar fibre reinforced composites fabricated by additive manufacturing process. Advances in Materials and Processing Technologies 2024, 10 (1), 142-156. DOI: 10.1080/2374068X.2022.2106655.
[48] Duan, Y.; Cui, Z.; Xie, X.; Tie, Y.; Zou, T.; Wang, T. Mechanical characteristics of composite honeycomb sandwich structures under oblique impact. Theoretical and Applied Mechanics Letters 2022, 12 (5), 100379. DOI: https://doi.org/10.1016/j.taml.2022.100379.
[49] Zhao, H.; Gao, Z.; Zhai, D.; Zhao, G. Enhanced mechanical property of continuous carbon fiber/polyamide thermoplastic composites by combinational treatments of carbon fiber fabric. Composites Communications 2023, 38, 101508. DOI: https://doi.org/10.1016/j.coco.2023.101508.
[50] Yang, Y.; Yang, B.; Chang, Z.; Duan, J.; Chen, W. Research Status of and Prospects for 3D Printing for Continuous Fiber-Reinforced Thermoplastic Composites. In Polymers, 2023; Vol. 15.
[51] Kargar, E.; Ghasemi-Ghalebahman, A. Experimental investigation on fatigue life and tensile strength of carbon fiber-reinforced PLA composites based on fused deposition modeling. Scientific Reports 2023, 13 (1), 18194. DOI: 10.1038/s41598-023-45046-x.
[52] Zhang, J.; Zhou, Z.; Zhang, F.; Tan, Y.; Tu, Y.; Yang, B. Performance of 3D-Printed Continuous-Carbon-Fiber-Reinforced Plastics with Pressure. In Materials, 2020; Vol. 13.
[53] Haque Protyai, M. I.; Adib, F. M.; Taher, T. I.; Karim, M. R.; Rashid, A. B. Performance evaluation of kevlar fiber reinforced epoxy composite by depositing graphene/SiC/Al2O3 nanoparticles. Hybrid Advances 2024, 6, 100245. DOI: https://doi.org/10.1016/j.hybadv.2024.100245.
[54] Singh, T. J.; Samanta, S. Characterization of Kevlar Fiber and Its Composites: A Review. Materials Today: Proceedings 2015, 2 (4), 1381-1387. DOI: https://doi.org/10.1016/j.matpr.2015.07.057.
[55] Cersoli, T.; Yelamanchi, B.; MacDonald, E.; Carrillo, J. G.; Cortes, P. 3D printing of a continuous fiber-reinforced composite based on a coaxial Kevlar/PLA filament. Composites and Advanced Materials 2021, 30, 26349833211000058. DOI: 10.1177/26349833211000058 (acccessed 2025/04/19).
[56] Kvalsvig, A.; Yuan, X.; Potgieter, J.; Cao, P. 3D printing of fibre reinforced honeycomb structured composite materials. In 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 28-30 Nov. 2016, 2016; pp 1-6. DOI: 10.1109/M2VIP.2016.7827341.
[57] Srirekha, A.; Bashetty, K. Infinite to finite: an overview of finite element analysis. Indian J Dent Res 2010, 21 (3), 425-432. DOI: 10.4103/0970-9290.70813 From NLM.
[58] Kohnke, P. C. ANSYS. In Finite Element Systems: A Handbook, Brebbia, C. A. Ed.; Springer Berlin Heidelberg, 1982; pp 19-25.
[59] Dickson, A.; Barry, J.; McDonnell, K.; Dowling, D. Fabrication of Continuous Carbon, Glass and Kevlar fibre reinforced polymer composites using Additive Manufacturing. Additive Manufacturing 2017, 16. DOI: 10.1016/j.addma.2017.06.004.
[60] Xie, S.; Jing, K.; Zhou, H.; Liu, X. Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact. Composite Structures 2019, 235, 111814. DOI: 10.1016/j.compstruct.2019.111814.
[61] Charekhli-Inanllo, M.; Mohammadimehr, M. The effect of various shape core materials by FDM on low velocity impact behavior of a sandwich composite plate. Engineering Structures 2023, 294, 116721. DOI: 10.1016/j.engstruct.2023.116721.
[62] Zhang, G.; Wang, B.; Ma, L.; Xiong, J.; Wu, L. Response of sandwich structures with pyramidal truss cores under the compression and impact loading. Composite Structures 2013, 100, 451-463. DOI: https://doi.org/10.1016/j.compstruct.2013.01.012.
[63] Huang, C.-H.; Lee, Y.-J. Experiments and simulation of the static contact crush of composite laminated plates. Composite Structures 2003, 61 (3), 265-270. DOI: https://doi.org/10.1016/S0263-8223(02)00047-8.
[64] Chen, Y.; Fu, K.; Hou, S.; Han, X.; Ye, L. Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings. Composites Part B: Engineering 2018, 142, 159-170. DOI: https://doi.org/10.1016/j.compositesb.2018.01.020.
[65] Xiao, J. R.; Gama, B. A.; Gillespie, J. W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading. Composite Structures 2007, 78 (2), 182-196. DOI: https://doi.org/10.1016/j.compstruct.2005.09.001.