簡易檢索 / 詳目顯示

研究生: 龔俊豪
Kung, Chun-Hao
論文名稱: 利用實驗設計法進行氯、溴、碘三成分混合型之鈣鈦礦太陽能電池製程最佳化
Optimization for the fabrication of ternary halide perovskite solar cells via experimental design
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 108
中文關鍵詞: 鈣鈦礦太陽能電池混合物實驗設計法最佳化製程
外文關鍵詞: Perovskite solar cells, mixture design, optimization
相關次數: 點閱:129下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以全溶液製程(Solution process)方法製備鈣鈦礦太陽能電池,元件結構為ITO/PEDOT:PSS/Perovskite/PCBM/Al,製作於平面式鈣鈦礦太陽能電池(Planar perovskite solar cells)。藉由中心組成設計法(central composite design,CCD)以及混合物實驗設計法(mixture design of experiments, DOE)來找出最佳製程參數配方,以製備高效率鈣鈦礦太陽能電池。
    第一部份是將鈣鈦礦的加熱時間及溫度做為控制因子,並以中心組成設計法搭配變異數分析(Analysis of variance,簡稱ANOVA),找到最佳的製程參數。由SAS統計迴歸模擬分析得知,最主要影響元件特性的因子為溫度效應。
    第二部份是使用無機化合物碘化鉛(PbI2)混合不同比例的氯、溴、碘,並以DMF為溶劑製備為鈣鈦礦吸光薄膜,因為氯、溴、碘三成份混摻在鈣鈦礦吸光層上各有不同功能,因此藉由實驗設計方法的截長補短特性,並且結合MatLab軟體繪出三角圖,得以找出三者的最佳混合比例,同時了解三成分各自扮演角色。

    This work reports a study on trying to find the best recipe for the fabrication of perovskite solar cells. There are two methods, central composite design and mixture design, used to find the optimized fabricating parameters. It has been know that the efficiency of perovskite solar cells are sensitive to annealing temperature and annealing time. Most of all, these two parameters are the key factors to attain high efficiency. Also, there are interaction between them. Thus, it is advantage for using central composite design to understand the main factor affecting the efficiency which is annealing temperature. We demonstrate that the PCE of 8.14% could be obtained with optimized recipe. In addition, ternary halide of perovskite solar cells have attracted great attention because of potential efficiencies. However, it is hard to distinguish the complicate ternary system of perovskite solar cells. Mixture design of experiment is an effective and accurate way to know these three components, chloride, bromide and iodide how interact each other. It is benefit for reaching high PCE of 9.47% with the optimized recipe in ternary halide of perovskite solar cells.

    中文摘要 I 英文延伸摘要 II 誌謝 VI 目錄 VIII 表目錄 XII 圖目錄 XIII 符號與縮寫 XVI 第一章 緒論 1 1.1 太陽能電池之簡介 1 1.1.1 前言 1 1.1.2 太陽能電池發展簡史 2 1.1.3 太陽能電池之光電轉換原理 3 1.1.4 太陽能電池之光電特性 5 1.1.5 有機/無機混合鈣鈦礦太陽能電池發展 11 1.2 中心組成設計法與實驗設計法的應用實例 12 第二章 鈣鈦礦太陽能電池文獻回顧 19 2.1 鈣鈦礦太陽能電池簡介 19 2.1.1 鈣鈦礦太陽能電池的起源 19 2.1.2 鈣鈦礦材料在太陽能電池研究上的進展 20 2.2 混合型鈣鈦礦材料的應用 21 2.3 氯、溴、碘在鈣鈦礦太陽能電池中功能 22 2.4 鈣鈦礦材料製程方法進展 23 2.5 鈣鈦礦太陽能電池研究上面臨的問題與挑戰 25 2.6 研究動機 25 第三章 利用中心組成設計法最佳化製程參數 33 3.1 前言 33 3.2 實驗部分 34 3.2.1 實驗藥品 34 3.2.2 元件組裝與特性量測 36 3.2.3 二維表面粗度儀之量測 40 3.2.4 掃描式電子顯微鏡量測 40 3.2.5 X-ray繞射圖譜之量測 40 3.2.6 迴歸方程式與二階反應曲線之製作 41 3.3 實驗結果與討論 41 3.3.1 前驅物濃度與轉速對於元件特性之影響 42 3.3.2 中心組成設計法找尋最佳配方之探討 43 3.3.3 最佳配方的效率驗證 45 3.3.4 不同溫度及加熱時間下對於鈣鈦礦表面型態之影響 46 3.4 結論 47 第四章 以三成分混合物實驗設計法找出最佳製程參數 59 4.1 前言 59 4.2 混合物實驗設計法 60 4.2.1 混合物實驗設計法原理 60 4.2.2 典型多項式 61 4.2.3 典型多項式的參數估計 63 4.2.4 混合物實驗結合製作參數 65 4.2.5 改良型三成份混合物實驗設計 65 4.2.6 迴歸模式之檢定 66 4.3 實驗部分 68 4.3.1 實驗藥品 68 4.3.2 MAI、MABr、MACl的合成方法 68 4.3.3 元件組裝與特性量測 69 4.3.4 X光能量分散光譜儀之量測 69 4.3.5 UV-vis吸收光譜量測 70 4.3.6 X-ray繞射圖譜之量測 70 4.3.7 迴歸方程式與等高線圖之製作 71 4.4 實驗結果與討論 71 4.4.1 三成份氯、溴、碘之混合型鈣鈦礦元素分析 71 4.4.2 三成份氯、溴、碘之混合型鈣鈦礦之元件特性 72 4.4.3 三成份氯、溴、碘之混合型鈣鈦礦三角圖 73 4.4.4 三成份氯、溴、碘之混合型鈣鈦礦最佳配方驗證 78 4.4.5 三成份氯、溴、碘之混合型鈣鈦礦薄膜型態探討 79 4.4.6 三成份氯、溴、碘之混合型鈣鈦礦吸光性探討 80 4.5 結論 81 第五章 總結與建議 100 5.1 總結 100 5.2 未來發展與建議 101 參考文獻 102

    [1] Association, E.P.I., Global market outlook for photovoltaics 2013–2017. Online, http://www. epia. org/news/publications/[Accessed 9 December 2013], (2013).
    [2] Chapin, D., C. Fuller, and G. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power.” Journal of Applied Physics, 25, 676-677 (1954).
    [3] Chilvery, A.K., Batra, A.K., Yang, B., Xiao, K., Guggilla, P., Aggarwal, M.D., Surabhi, R., Lal, R.B., Currie, J.R., and Penn, B.G., “Perovskites: transforming photovoltaics, a mini-review.” Journal of Photonics for Energy, 5, 57402-57402 (2015).
    [4] Spanggaard, H. and Krebs, F.C., “A brief history of the development of organic and polymeric photovoltaics.” Solar Energy Materials and Solar Cells, 83, 125-146 ( 2004).
    [5] Qi, B. and J. Wang, “Open-circuit voltage in organic solar cells. Journal of Materials Chemistry,” 22, 24315-24325 (2012).
    [6] Qi, B. and J. Wang, “Fill factor in organic solar cells.” Physical Chemistry Chemical Physics, 15, 8972-8982 (2013)
    [7] McGehee, M.D., “Perovskite solar cells: Continuing to soar.” Nat Mater, 13, 845-846 (2014).
    [8] Gao, P., M. Gratzel, and M.K. Nazeeruddin, “Organohalide lead perovskites for photovoltaic applications.” Energy & Environmental Science, 7, 2448-2463 (2014).
    [9] Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.” Journal of the American Chemical Society, 131, 6050-6051 (2009).
    [10] Park, N.G., “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.” Journal of Physical Chemistry Letters, 4, 2423-2429 (2013) .
    [11] Kim, H.-S., S.H. Im, and N.-G. Park, “Organolead halide perovskite: new horizons in solar cell research.” The Journal of Physical Chemistry C, 118, 5615-5625 (2014).
    [12] Snaith, H.J., “Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells.” Journal of Physical Chemistry Letters, 4, 3623-3630 (2013).
    [13] Yang, C.H., Lin, S.M., and Wen, T.C., “Application of statistical experimental strategies to the process optimization of waterborne polyurethane.” Polymer Engineering & Science, 35, 722-730 (1995).
    [14] Li, Y.-J., Chang, C.-C., and Wen, T.-C., “Application of statistical experimental strategies to H2O2 production on Au/graphite in alkaline solution.” Industrial & engineering chemistry research, 35, 4767-4771 (1996).
    [15] Wen, T.-C., Kuo, H.-H., and Gopalan, “Statistical design strategies to optimize properties in emulsion copolymerization of methyl methacrylate and acrylonitrile.” Industrial & engineering chemistry research, 40, 4536-4542 (2001).
    [16] Wen, T.C. and Chen, W.C., “Blending thermoplastic polyurethanes and poly (ethylene oxide) for composite electrolytes via a mixture design approach.” Journal of applied polymer science, 77, 680-692 (2000).
    [17] Liu, C.L., Hu, C.-C., Wu, S.-H., and Wu, T.-H., “Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced-graphene oxides using experimental design strategies.” Journal of The Electrochemical Society, 160, H547-H552 (2013).
    [18] Lien, C.-H., Chang, K.-H., Hu, C.-C., and Wang, D.S.-H., “Optimizing Bismuth-Modified Graphene-Carbon Nanotube Composite-Coated Screen Printed Electrode for Lead-Ion Sensing through the Experimental Design Strategy.” Journal of The Electrochemical Society, 160, B107-B112 (2013).
    [19] Wen, T.-C., Tseng, H.-S., and Lu, Z.-B., “Co-solvent effect on conductivity of composite electrolytes comprising polyethylene oxide and polytetramethylene glycol-based waterborne polyurethane via a mixture design approach.” Solid state ionics, 134, 291-301(2000).
    [20] Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., and Park, N.-G., “6.5% efficient perovskite quantum-dot-sensitized solar cell.” Nanoscale, 3, 4088-4093. (2011).
    [21] Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Gratzel, M., and Park, N.G., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%.” Scientific Reports, 2, Article number: 591 (2012).
    [22] Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J., “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites.” Science, 338, 643-647. (2012).
    [23] Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J., “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber.”Science, 342, 341-344. (2013).
    [24] Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Graetzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells.” Nature, 499, 316-319 (2013).
    [25] Liu, M.Z., Johnston, M.B., and Snaith, H.J., “Efficient planar heterojunction perovskite solar cells by vapour deposition.” Nature, 501, 395-398 (2013).
    [26] Liu, D. and Kelly, T.L., “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.” Nature Photonics, 8, 133-138 (2014).
    [27] Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-b., Duan, H.-S., Hong, Z., You, J., Liu, Y., and Yang, Y., “Interface engineering of highly efficient perovskite solar cells.” Science, 345,542-546 (2014).
    [28] Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J., “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.” Energy & Environmental Science, 7, 982-988 (2014).
    [29] Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P., and Kanatzidis, M.G., “Lead-free solid-state organic-inorganic halide perovskite solar cells.” Nature Photonics, 8, 489-494. (2014).
    [30] Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., petrozza, a., Herz, L., and Snaith, H., “Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications.” Energy & Environmental Science, (2014).
    [31] Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., and Ma, T.,“CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm.” The Journal of Physical Chemistry Letters, 5,1004-1011 (2014).
    [32] Ma, Y., Zheng, L., Chung, Y.-H., Chu, S., Xiao, L., Chen, Z., Wang, S., Qu, B., Gong, Q., Wu, Z., and Hou, X., “A highly efficient mesoscopic solar cell based on CH3NH3PbI3-xClx fabricated via sequential solution deposition.” Chemical Communications, 50, 12458-12461 (2014).
    [33] You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T.-B., Chen, C.-C., Lu, S., Liu, Y., Zhou, H., and Yang, Y., “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility.” ACS Nano, 8, 1674-1680 (2014).
    [34] Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., and Seok, S.I., “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.” Nano Letters, 13, 1764-1769 (2013).
    [35] Kulkarni, S.A., Baikie, T., Boix, P.P., Yantara, N., Mathews, N., and Mhaisalkar, S., “Band-gap tuning of lead halide perovskites using a sequential deposition process.” Journal of Materials Chemistry A, 2, 9221-9225 (2014).
    [36] Edri, E., Kirmayer, S., Kulbak, M., Hodes, G., and Cahen, D., “Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells.” The Journal of Physical Chemistry Letters, 5, 429-433 (2014).
    [37] Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., and Calestani, G., “MAPBI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties.” Chemistry of Materials, 25, 4613-4618 (2013).
    [38] Liang, P.-W., Chueh, C.-C., Xin, X.-K., Zuo, F., Williams, S.T., Liao, C.-Y., and Jen, A.K.Y., “High-performance planar-heterojunction solar cells based on ternary halide large-band-gap perovskites.” Advanced Energy Materials, 5, 1400960 (2015).
    [39] Suarez, B., Gonzalez-Pedro, V., Ripolles, T.S., Sanchez, R.S., Otero, L., and Mora-Sero, I., “Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells.” The Journal of Physical Chemistry Letters, 5, 1628-1635. (2014).
    [40] Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., and Graetzel, M., “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.” Journal of the American Chemical Society, 134, 17396-17399 (2012).
    [41] Kim, H.-B., Choi, H., Jeong, J., Kim, S., Walker, B., Song, S., and Kim, J.Y., “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells.” Nanoscale, 6, 6679-6683 (2014).
    [42] Jeng, J.-Y., Chiang, Y.-F., Lee, M.-H., Peng, S.-R., Guo, T.-F., Chen, P., and Wen, T.-C., “CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells.” Advanced Materials, 25, 3727-3732 (2013).
    [43] Liang, P.-W., Liao, C.-Y., Chueh, C.-C., Zuo, F., Williams, S.T., Xin, X.-K., Lin, J., and Jen, A.K.Y., “Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells.” Advanced Materials, 26, 3748-3754 (2014).
    [44] Kim, J., Kim, G., Kim, T.K., Kwon, S., Back, H., Lee, J., Lee, S.H., Kang, H., and Lee, K., “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer.” Journal of Materials Chemistry A, 2, 17291-17296 (2014).
    [45] Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., and Hsu, Y.-J., “Nickel oxide electrode interlayer in CH3NH3PbI3 Perovskite/PCBM planar-heterojunction hybrid solar cells.” Advanced Materials, 26, 4107-4113 (2014).
    [46] Chen, Q., Zhou, H.P., Hong, Z.R., Luo, S., Duan, H.S., Wang, H.H., Liu, Y.S., Li, G., and Yang, Y., “Planar heterojunction perovskite solar cells via vapor-assisted solution process.” Journal of the American Chemical Society, 136, 622-625 (2014).
    [47] Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., and Huang, J., “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers.” Energy & Environmental Science, 7, 2619-2623 (2014).
    [48] Bi, D., Moon, S.-J., Haggman, L., Boschloo, G., Yang, L., Johansson, E.M.J., Nazeeruddin, M.K., Gratzel, M., and Hagfeldt, A., “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures.” RSC Advances, 3, 18762-18766 (2013).
    [49] Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., and Huang, J., “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement.” Advanced Materials, 26, 6503–6509 (2014).
    [50] Bi, C., Shao, Y., Yuan, Y., Xiao, Z., Wang, C., Gao, Y., and Huang, J., “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing.” J. Mater. Chem. A, 2, 18508-18514 (2014).
    [51] Chiang, C.-H., Tseng, Z.-L., and Wu, C.-G., “Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process.” Journal of Materials Chemistry A, 2, 15897-15903 (2014).
    [52] Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I., “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells.” Nat Mater, 13, 897-903 (2014).
    [53] Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., and Snaith, H.J., “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells.” Advanced Functional Materials, 24, 151-157 (2014).
    [54] Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K., and Miura, N., “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3.” Solid State Communications, 127, 619-623 (2003).
    [55] Dualeh, A., Tétreault, N., Moehl, T., Gao, P., Nazeeruddin, M.K., and Grätzel, “Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells.” Advanced Functional Materials, 24, 3250-3258(2014).
    [56] Williams, S.T., Zuo, F., Chueh, C.-C., Liao, C.-Y., Liang, P.-W., and Jen, A.K.-Y., “Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS nano, 8, 10640-10654 (2014).
    [57] Cornell, J.A., Experiments with mixtures : designs, models, and the analysis of mixture data., New York: Wiley. (2002)
    [58] Cornell, J.A., Response surfaces: designs and analyses, Marcel Dekker, Inc. New York, ISBN:0-824-77653-4 (1987)
    [59] Scheffe, H., “Experiments with mixtures.” Journal of the Royal Statistical Society Series B-Statistical Methodology, 20, 344-360 (1958).
    [60] Draper, N.R.S.H., “Applied regression analysis.” 11, 429-1969 (1966)
    [61] Lin, S.M. and Wen, T.-C., “A mixture design approach to the service life and the oxygen-evolving catalytic activity of ru-sn-ti ternary oxide coated electrodes.” Journal of Applied Electrochemistry, 23, 487-494 (1993)
    [62] Lin, S.M. and Wen, T.-C., “Oxygen evolution on ir-ru-sn ternary oxide-coated electrodes in H2SO4 solution - an approach employing statistical experimental strategy.” Journal of the Electrochemical Society, 140, 2265-2271 (1993)
    [63] Li, Y.J., Chang, C.C., and Wen, T.-C., “A mixture design approach to thermally prepared Ir-Pt-Au ternary electrodes for oxygen reduction in alkaline solution.” Journal of Applied Electrochemistry, 27, 227-234 (1997).
    [64] Yang, C.H., Li, Y.J., and Wen, T.-C., “Mixture design approach to PEG-PPG-PTMG ternary polyol-based waterborne polyurethanes.” Industrial & Engineering Chemistry Research, 36, 1614-1621 (1997).
    [65] Yang, C.H., Yang, H.J., Wen, T.-C., Wu, M.S., and Chang, J.S., “Mixture design approaches to IPDI-H6XDI-XDI ternary diisocyanate-based waterborne polyurethanes.” Polymer, 40, 871-885 (1999).

    下載圖示 校內:2020-08-19公開
    校外:2020-08-19公開
    QR CODE