簡易檢索 / 詳目顯示

研究生: 方俐婷
Fang, Li-Ting
論文名稱: 多波長超穎波前感測器
Multi-Wavelength Wavefront Meta-Sensor
指導教授: 吳品頡
Wu, Pin-Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 56
中文關鍵詞: 介電質超穎介面超穎透鏡多波長Shack Hartmann波前感測器幾何相位
外文關鍵詞: Dielectric metasurface, Metalens, Multi-wavelength, Shack Hartmann wavefront sensor, Geometric phase
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學系統中,當平面光束經由透鏡、光學儀器等光學元件穿透、反射後,均可能造成平面波前變形,產生像差。傳統以研磨透鏡所製成的Shack Hartmann波前感測器可藉由聚焦光點偏移回推入射波前形態,但受限於研磨透鏡的色差特性一次只能偵測單一波長之波前訊息。本篇論文將展示以多功能超穎透鏡陣列作為多波長波前感測器的效果,且由於介面上之次波長單元結構是使用幾何相位的方式調製光相位,故介面上之單元結構效率均勻,經結構共振後出射的光束相互干涉的結果能與所設計之相位分布得到的光學現象相符。此外,以該方式較容易達成完整2π相位控制,讓介面上的相位分布設計有更多彈性。
    本工作首先以數值模擬設計樣品,接著利用電子束微影製程實際製作,並將完成之樣品以我們所設計的光學檢測架構測試其光學特性,藉由後續Zernike係數之分析處理數值化量測數據。結果顯示其實際作為波前感測系統的可行性,展示超穎透鏡陣列所製作之平面光學元件於光學系統的應用。

    Traditionally, a Shack Hartmann wavefront sensor is composed of bulky lenslets array that have chromatic aberration. Accordingly, it can only characterize the wavefront at one single wavelength once. The focal length has to be adjusted while the wavelength of detection is changed.
    In this work, a multifunctional metalens (metasurface lens) array was used to replace the bulky lenslets array in a Shack Hartmann wavefront sensor, which demonstrated the potential of multi-wavelength wavefront detection. Additionally, since the multifunctional metalens we developed were served as the unit lens of the wavefront sensor, the dimension of optical system was significantly shirked.

    中文摘要 I Extended Abstract II 致謝 VII 目錄 IX 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 簡介 2 1.2.1 超穎介面 2 1.2.2 金屬超穎介面 2 1.2.3 介電質超穎介面 3 1.2.4 多功能超穎透鏡 5 1.3 Shack Hartmann波前感測器 7 1.3.1 Zernike係數與多項式 7 1.3.2 理論及工作原理 9 1.4 研究動機與目的 13 第二章 數值模擬與製程步驟 15 2.1 前言 15 2.2 單元結構設計 15 2.2.1 材料選擇 15 2.2.2 結構參數優化 16 2.2.3 幾何相位 18 2.3 多功能超穎透鏡之設計 20 2.3.1 相位分佈 20 2.3.2 聚焦超穎透鏡之特性與設計 21 2.4 電子束微影製程 22 2.4.1 製程儀器介紹 22 2.4.2 製程步驟 30 第三章 光學檢測 35 3.1 前言 35 3.2 光路設計 35 3.3 光學量測方法 40 第四章 結果與討論 44 4.1 前言 44 4.2 氮化鎵單元結構光學表現與優化 44 4.3 單一多功能超穎透鏡 47 4.4 多功能超穎透鏡陣列 49 4.5 波前感測 50 第五章 結論與未來展望 53 參考文獻 54

    [1] R. W. Wood, On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum, Proceedings of the Physical Society of London 18, 269-275 (1902).
    [2] J. Hu, S. Bandyopadhyay, Y.-h. Liu, and L.-y. Shao, A Review on Metasurface: From Principle to Smart Metadevices, Frontiers in Physics 8, 586087 (2021).
    [3] D. Neshev and I. Aharonovich, Optical Metasurfaces: New Generation Building Blocks for Multi-Functional Optics, Light: Science & Applications 7, 58 (2018).
    [4] W. Hou and S. B. Cronin, A Review of Surface Plasmon Resonance-Enhanced Photocatalysis, Advanced Functional Materials 23, 1612-1619 (2013).
    [5] P. Pattnaik, Surface Plasmon Resonance, Applied Biochemistry and Biotechnology 126, 79-92 (2005).
    [6] F. B. Kamal Eddin and Y. W. Fen, The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection, Molecules 25, 2769 (2020).
    [7] Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, Surface Plasmon Resonance for Cell-Based Clinical Diagnosis, Sensors 14, 4948-4959 (2014).
    [8] Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, Mie Resonance-Based Dielectric Metamaterials, Materials Today 12, 60-69 (2009).
    [9] P. Urone and R. Hinrichs, College physics, (1998).
    [10] Y. Kivshar and A. Miroshnichenko, Meta-Optics with Mie Resonances, Optics and Photonics News 28, 24-31 (2017).
    [11] S.-W. Moon, Y. Kim, G. Yoon, and J. Rho, Recent Progress on Ultrathin Metalenses for Flat Optics, iScience 23, 101877 (2020).
    [12] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, et al., A Broadband Achromatic Metalens in The Visible, Nature Nanotechnology 13, 227-232 (2018).
    [13] X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, et al., Dual-Polarity Plasmonic Metalens for Visible Light, Nature Communications 3, 1198 (2012).
    [14] B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, et al., Gan Metalens for Pixel-Level Full-Color Routing at Visible Light, Nano letters 17, 6345-6352 (2017).
    [15] Z. Frits, Diffraction theory of the knife-edge test and its improved form: the phase-contrast method, Journal of Micro/Nanolithography, MEMS, and MOEMS 1, 87-94 (2002).
    [16] Notes on AMATEUR TELESCOPE OPTICS, https://www.telescope-optics.net/index.htm#TABLE_OF_CONTENTS.
    [17] L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, Adaptive Control of a Micromachined Continuous-Membrane Deformable Mirror for Aberration Compensation, Applied optics 38, 168-176 (1999).
    [18] R. Tyson, Topics in Adaptive Optics. BoD–Books on Demand, 2012.
    [19] Sheng-YanLin and S.-J. Chen, R&D of Real-Time Wavefront Detection System, National Cheng Kung University, 2011.
    [20] L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, Wave-Front Generation of Zernike Polynomial Modes with a Micromachined Membrane Deformable Mirror, Applied Optics 38, 6019-6026 (1999).
    [21] W. T. Welford, Aberrations of Optical Systems. Routledge, (2017).
    [22] G. Biener, A. Niv, V. Kleiner, and E. Hasman, Formation of Helical Beams by Use of Pancharatnam–Berry Phase Optical Elements, Optics letters 27, 1875-1877 (2002).
    [23] S. Ainouz, J. Zallat, A. de Martino, and C. Collet, Physical interpretation of polarization-encoded images by color preview, OPTICS EXPRESS 14, 5916-5927 (2006).
    [24] W. H. Xu, X. H. Ling, D. Y. Xu, S. Z. Chen, S. C. Wen, and H. L. Luo, Enhanced Optical Spatial Differential Operations via Strong Spin-Orbit Interactions in an Anisotropic Epsilon-Near-Zero Slab, PHYSICAL REVIEW A 104, 053513 (2021).
    [25] E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, and E. Karimi, Geometric Phase from Aharonov–Bohm to Pancharatnam–Berry and Beyond, Nature Reviews Physics 1, 437-449 (2019).
    [26] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, science 345, 298-302 (2014).
    [27] L. De Broglie, Waves and Quanta, Nature 112, 540-540 (1923).
    [28] ELIONIX ELS7500-EX 機台簡介, https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1L12_A.pdf.
    [29] T. I. Awan, A. Bashir, and A. Tehseen, Chemistry of Nanomaterials: Fundamentals and Applications. Elsevier, (2020).
    [30] M. J. Fransen, M. H. F. Overwijk, and P. Kruit, Brightness Measurements of a Zro/W Schottky Electron Emitter in a Transmission Electron Microscope, Applied Surface Science 146, 357-362 (1999).
    [31] M. J. Fransen, T. L. Van Rooy, P. C. Tiemeijer, M. H. F. Overwijk, J. S. Faber, and P. Kruit, In Advances in Imaging and Electron Physics, Edited by P. W. Hawkes Elsevier, (1999), 91-166.
    [32] J. Orloff, Handbook of Charged Particle Optics. CRC press, (2017).
    [33] C. S. Wu, Y. Makiuchi, and C. Chen, High-Energy Electron Beam Lithography for Nanoscale Fabrication, Lithography 13, 241 (2010).
    [34] T. Shaffner and R. Van Veld, 'Charging'effects in the Scanning Electron Microscope, Journal of Physics E: Scientific Instruments 4, 633 (1971).
    [35] D. M. Mattox, In Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), Edited by D. M. Mattox William Andrew Publishing, Boston, 2010, 237-286.
    [36] 李安平, 寇崇善, 吳敏文, 曾錦清, 蔡文發, and 鄭國川, 電漿源原理與應用之介紹.
    [37] NKT Photonics, https://www.nktphotonics.com/.
    [38] SuperK EXTREME Supercontinuum Lasers -EXR-15, https://www.findlight.net/lasers/fiber-lasers/broadband-supercontinuum-sources/superk-extreme-supercontinuum-lasers-exr-15.
    [39] SuperK SELECT, https://www.nktphotonics.com/products/supercontinuum-white-light-lasers/superk-select/.
    [40] THORLABS, https://www.thorlabs.com/.
    [41] 50X Mitutoyo Plan Apo Infinity Corrected Long WD Objective, https://www.edmundoptics.com/p/50x-mitutoyo-plan-apo-infinity-corrected-long-wd-objective/6626/.
    [42] PCO Imaging, https://www.pco-imaging.com/.
    [43] A. E. Gamal and H. Eltoukhy, CMOS Image Sensors, IEEE Circuits and Devices Magazine 21, 6-20 (2005).
    [44] S. Watanabe, T. Takahashi, and K. Bennett, In Single Molecule Spectroscopy and Superresolution Imaging X SPIE, (2017), 76-83.
    [45] D. Litwiller, Ccd vs. cmos, Photonics Spectra 35, 154-158 (2001).
    [46] T. W. Cronin, A Different View: Sensory Drive in the Polarized-Light Realm, Current Zoology 64, 513-523 (2018).
    [47] S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, Guided‐Mode Resonances in All‐Dielectric Terahertz Metasurfaces, Advanced Optical Materials 8, 1900959 (2020).
    [48] T. He, Y. Meng, Z. Liu, F. Hu, R. Wang, D. Li, et al., Guided Mode Meta-Optics: Metasurface-Dressed Waveguides for Arbitrary Mode Couplers and On-Chip OAM Emitters with a Configurable Topological Charge, Optics Express 29, 39406-39418 (2021).
    [49] K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, Ultraviolet Metasurfaces of≈ 80% Efficiency with Antiferromagnetic Resonances for Optical Vectorial Anti‐Counterfeiting, Laser & Photonics Reviews 13, 1800289 (2019).

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE