| 研究生: |
侯杰利 Hou, Jei-Li |
|---|---|
| 論文名稱: |
應用氧化鋅奈米線結構於三接面太陽電池及自供電元件之研究 Triple junction solar cell with ZnO nanowire structure and self-powered device |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 三五族化合物半導體 、太陽電池 、透明導電電極 、偵檢器 |
| 外文關鍵詞: | III-V compound semiconductor, solar cell, transparent conductive electrode, photodetector |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,具有高光電響應特性及轉換效率之三五族化合物半導體被廣泛地研究且被應用於太陽電池及偵檢器元件;因此,在本論文中,作者研究改善三五族化合物半導體鍺/砷化鎵/磷化銦鎵三接面太陽電池光電特性。因為三接面太陽電池因電流匹配之串疊結構,且可吸收300nm~1800nm太陽光譜,所以,在目前的各種太陽電池中效率最高。
氧化鋅的能隙的大小為3.37電子伏特,具有透光率高以及高溫穩定等特性,因此,廣泛被利用在各式太陽電池當作抗反射層廣泛被當作抗反射層。本論文根據等效介質理論計算與分析出優化後的奈米結構抗反射層型貌,再使用成本較低之水溶液法成長氧化鋅奈米線於三接面太陽電池上並進行各種光電特性探討。
除此之外,為了減少傳統金屬電極遮避,造成入射光損失,作者應用改良後的氧化鋅鋁透明導電膜做為全透明式電極,並結合優化設計後的氧化鋅奈米柱,提供太陽電池的光電效率。
最後,作者應用三接面太陽電池高開路電壓特性,直接偏壓在氧化鋅系列紫外光偵檢器,做為一個三接面太陽電池與氧化鋅偵檢器的整合型裝置。可以迅速得到紫外光光電響應,並可將太陽電池的光電流供給其他裝置使用。除此之外,氧化鋅奈米柱結構也被應用來增加偵檢器的光響應。
In recent years, Ge/GaAs/GaInP TJ solar has been extensively studied and used in solar cells and the detector element due to excellent conversion efficiency. TJ solar cell tandem structure has highest conversion efficiency in all kinds of solar cells due to the current matching design and broad band absorption in solar spectrum. Therefore, the authors provides several methods to improve the optical and electrical properties of TJ solar cells and applies it to a integrated device.
The energy gap of the zinc oxide (ZnO) is 3.37 eV and ZnO has high transmittance and high thermal stability. ZnO nanowires (NW) are extensively used as antireflection (AR) coating on the solar cells due to its textured surface. Morever, ZnO NW can be well designed as a continuous AR coating and be excellent at anti-reflection function, according effective medium theory.
Conventional metal electrode of the solar cell makes the shading loss of incident light. In the dissertation, the author uses AZO of good electrical conductivity and high penetration characteristics to replace metal electrode and combines NW structure to improve the efficiency of solar cells.
In addition, TJ solar cells have high open circuit voltage (Voc) and the author applies it to directly bias the detector and enhance the responses immediately. Hence, an integrated self-powered ZnO photodetector (PD) biased by TJ solar to detect the UV incident light was demonstrated.
Chapter 1
[1] C. Fetzer, B. Jun, K. Edmondson, S. Khemthong, K. Rouhani, R. Cravens, R. Bardfield and M. Gillanders, “Production ready 30% efficient triple junction space solar cells”, Photovoltaic Specialists, IEEE Conference, pp. 1-4, 2008.
[2] S. Sinharoy, M. O. Patton, T. M. Valko, Sr and V. G. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells”, Prog. Photovolt: Res. Appl., vol. 10, pp. 427–432, 2002.
[3] D. J. Aiken and H.Q. Hou, “Design and production of extremely radiation-Hard 26% InGaP/GaAs/Ge Triple-Junction Solar Cells” in: Proc. 28th IEEE PV Specialists Conf., pp. 1374-1377, 2000.
[4] M. Yamaguchi, “III–V compound multi-junction solar cells: present and future”, Solar Energy Materials & Solar Cells, vol. 75, pp.261–269, 2003.
[5] M. Yamaguchi, T. Takamoto, K. Araki and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential”, Solar Energy, vol. 79, pp. 78–85, 2005.
[6] H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. J. Yoon and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics”, Energy & Environmental Sci., vol. 2, pp. 174–192, 2009.
[7] K. Hadobas, S. Kirsch, A. Carl, M. Acet and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces”, Nanotechnol., vol. 11, pp. 161–164, 2000.
[8] T. J. Hsueh, S. Y. Lin, W. Y. Weng, C. L. Hsu, T. Y. Tsai, B. T. Dai and J. M. Shieh, “Crystalline-Si photovoltaic devices with ZnO nanowires”, Solar Energy Materials & Solar Cells, vol. 98, pp, 494–498, 2012.
[9] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight”, Appl. Phys. Lett. vol. 94, Art. no. 223504, 2009.
[10] S. L.Diedenhofen, G. Grzela, E. Haverkamp, G. Bauhuis, J. Schermer and J. G. Rivas, “Broadband and omnidirectional anti-reflection layer for III/V multi-junction solar cells”, Solar Energy Materials & Solar Cells, vol. 101, pp. 308–314, 2012.
[11] P. K. H. Ho, D. S. Thomas, R. H. Friend and N. Tessler, “All-polymer optoelectronic devices”, Science, vol. 285, pp. 233–236, 1999.
[12] J. K. Kim, J. Q. Xi and E. F. Schubert, “Omni-directional reflectors for light-emitting diodes”, Proc. SPIE, vol. 6134, pp. 61340D-1–61340D-12, 2012.
[13] C. J. Ting, C. F. Chen and C. P. Chou, “Subwavelength structures for broadband antireflection application”, Optics Communications, vol. 282, pp. 434–438, 2009.
[14] R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating”, JOURNAL OF APPLIED PHYSICS, vol. 110, pp. 113105, 2011.
[15] Ming-Hsien Wua, Sheng-Po Chang, Wen-Yih Liao, Mu-Tao Chub, Shoou-Jinn Chang, “Efficiency of GaN/InGaN double-heterojunction photovoltaic cells under concentrated illumination”, Surface and Coatings Technology, 31 May 2012.
[16] Ming-Hsien Wu, Sheng-Po Chang, Shoou-Jinn Chang, Ray-Hua Horng, Wen-Yih Liao, and Ray-Ming Lin, “Characteristics of GaN/InGaN Double-Heterostructure Photovoltaic Cells”, International Journal of Photo energy Volume 2012 (2012), Article ID 206174, 5 pages.
[17] Jei-Li Hou, Shoou-Jinn Chang, Meng-Chu Chen, C. H. Liu, Ting-Jen Hsueh, “GaN-Based Planar p-i-n Photodetectors With the Be-Implanted Isolation Ring”, IEEE Transactions on electron Devices, Volume 60, Feb 20, 2013.
Chapter 2
[1] Joseph A Jervase, Hadj Bourdoucen, and Ali Al-Lawati, “Solar cell parameter extraction using genetic algorithms”, Meas. Sci. Technol., vol. 12, pp. 1922–1925, 2001.
[2] J. Pallarès, R. Cabré, and L. F. Marsal, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells”, J. Appl. Phys., vol. 100, pp. 084513-1084513-5, 2006.
[3] M. K. Munji, W. Okullo, E. E. V. Dyk, and F. J. Vorster, “Local device
parameter extraction of a concentrator photovoltaic cell under solar spot
illumination” , Sol. Energy Mater. Sol. Cells, vol. 94, pp. 2129-2136, 2010.
[4] Ming-Kun Lee, Jen-Chun Wang, Sheng-Fu Horng, and Hsin-Fei Meng, “Extraction of solar cell series resistance without presumed current voltage functional form,” Sol. Energy Mater. Sol. Cells, vol. 94, pp. 578-582, 2010.
[5] J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallarès, “Extraction of poly (3-hexylthiophene) (P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys., vol. 107, pp. 044505-1044505-4, 2010.
[6] Jurgen R Meyer-Arendt. Introduction to Classical and Modern Optics. Prentice-Hall, 4 edition, 1995.
[7] Stuart Boden. Biomimetic Nanostructured Surfaces for Antireflection in Photo-voltaics. PhD dissertation, University of Southampton, 2009.
[8] Jasprit Singh, “Optoelectronics-An Introduction to Materials and Device”. 78 (1996)
[9] Mitsuo Fukuda,”Optical Semiconductor Devices”. 226 (1999)
Chapter 3
[1] S. Sinharoy, M. O. Patton, T. M. Valko, Sr and V. G. Weizer. Progress in the Development of Metamorphic Multi-junction III–V Space Solar Cells. Prog. Photovolt: Res. Appl. 2002; 10:427–432.
[2] S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al‐Abbadi, F. Dimroth and A. W. Bett. Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions. Solar Energy Materials & Solar Cells 2010; 94:869–877.
[3] M. Yamaguchi, T. Takamoto, A. Khan, M. Imaizumi, S. Matsuda and N. J. Ekins-Daukes. Super-high-efficiency multi-junction solar cells. Prog. Photovolt: Res. Appl. 2005; 13:125–132.
[4] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes. Multi-junction III–V solar cells: current status and future potential. Solar Energy 2005; 79:78–85.
[5] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop. Solar cell efficiency tables (version 39). Prog. Photovolt: Res. Appl. 2012; 20:12–20.
[6] A. Braun, N. Szabó, K. Schwarzburg, T. Hannappel, E. A. Katz and J. M. Gordon. Current-limiting behavior in multijunction solar cells. Appl. Phys. Lett. 2011; 98:223506.
[7] M. Meusel, C. Baur, G. Le´tay, A. W. Bett, W. Warta and E. Fernandez. Spectral Response Measurements of Monolithic GaInP/Ga(In)As/Ge Triple-Junction Solar Cells: Measurement Artifacts and their Explanation. Prog. Photovolt: Res. Appl. 2003; 11:499–514.
[8] K. Sun, A. Kargar, N. Park, K. N. Madsen, P. W. Naughton, T. Bright, Y. Jing and D. Wang. Compound Semiconductor Nanowire Solar Cells. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2011; 17:No. 4.
[9] S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chemical Physics Letters 2002; 363:134–138.
[10] T. J. Hsueh, S. Y. Lin, W. Y. Weng, C. L. Hsu, T. Y. Tsai, B. T. Dai and J. M. Shieh, Crystalline-Si photovoltaic devices with ZnO nanowires. Solar Energy Materials & Solar Cells 2012; 98:494–498.
[11] G. Z. Wang, Y. Wang, M. Y. Yau, C. Y. To, C. J. Deng and D. H. L. Ng. Syndissertation of ZnO hexagonal columnar pins by chemical vapor deposition. Materials Letters 2005; 59:3870– 3875.
[12] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber and P. D. Yang. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials 2001; 13:113-116.
[13] L. Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials 2005; 15:3870-3875.
[14] Daniel J. Aiken. High performance anti-reflection coatings for broadband multi-junction solar cells. Solar Energy Materials & Solar Cells 2000; 64:393-404.
[15] L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 2001; 105: 3350-3352.
[16] A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Frechet and P. D. Yang. Oligo- and polythiophene/zno hybrid nanowire solar cells. Nano Lett. 2010; 10: 334–340.
[17] L. Z. Chen, W. E. I. Sha and W. C. H. Choy. Light harvesting improvement of organic solar cells with self-enhanced active layer designs. Opt Express 2012; 20: 8175-8185.
Chapter 4
[1] C. Fetzer, B. Jun, K. Edmondson, S. Khemthong, K. Rouhani, R. Cravens, R. Bardfield and M. Gillanders, “Production ready 30% efficient triple junction space solar cells”, Photovoltaic Specialists, IEEE Conference, pp. 1-4, 2008.
[2] S. Sinharoy, M. O. Patton, T. M. Valko, Sr and V. G. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells”, Prog. Photovolt: Res. Appl., vol. 10, pp. 427–432, 2002.
[3] D. J. Aiken and H.Q. Hou, “Design and production of extremely radiation-Hard 26% InGaP/GaAs/Ge Triple-Junction Solar Cells” in: Proc. 28th IEEE PV Specialists Conf., pp. 1374-1377, 2000.
[4] M. Yamaguchi, “III–V compound multi-junction solar cells: present and future”, Solar Energy Materials & Solar Cells, vol. 75, pp.261–269, 2003.
[5] K. Araki, M. Yamaguchi, M. Imaizumi, S. Matsuda, T. Takamoto and H. Kurita, “AM0 concentration operation of III–V compounds solar cells”, Proc. 28th IEEE Photovoltaic Specialists Conf., pp. 968–971, 2000.
[6] M. Yamaguchi, T. Takamoto, K. Araki and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential”, Solar Energy, vol. 79, pp. 78–85, 2005.
[7] H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. J. Yoon and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics”, Energy & Environmental Sci., vol. 2, pp. 174–192, 2009.
[8] C. Y. Tseng and C. T. Lee, “Mechanisms of (NH4)2Sx-treated III–V compound triple-junction solar cells incorporating with hybrid electrode”, Appl. Phys. Lett., vol. 101, Art. no. 033902, 2012.
[9] Y. Igasaki and H. Kanma, “Argon gas pressure dependence of the properties of transparent conducting ZnO:Al films deposited on glass substrates”, Appl. Surf. Sci., vol. 169/170, pp. 508–511, 2001.
[10] C. Y. Huang, T. H. Wu, C. Y. Cheng, and Y. K. Su, “Homogeneous ZnO nanostructure arrays on GaAs substrates by two-step chemical bath syndissertation”, J. Nanopart. Res., vol. 14, Art. no. 034518, 2012.
[11] A. G. Baca, F. Ren, J.C. Zolper, R. D. Briggs and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors”, Thin Solid Films, vol. 308/309, pp. 599–606, 1997.
[12] D. Jucknischke, H. J. Buhlmann, R. Houdrc, M. Ilegems, M. A. Py, B. Jeckelmann and W. Schwitz, “Properties of alloyed AuGeNi-contacts on GaAs-GaAlAs heterostructures”, IEEE Tran. Instrumentation Measrement, vol.. 40, pp. 228–230, 1991.
[13] M. Heiblum, M. I. Nathan and C. A. Chang, “IVA-6 Characteristics of AuGeNi ohmic contacts to GaAs”, IEEE Tran. Electron. Dev., vol. 28, pp. 1234–1235, 1981.
[14] K. Hadobas, S. Kirsch, A. Carl, M. Acet and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces”, Nanotechnol., vol. 11, pp. 161–164, 2000.
[15] T. J. Hsueh, S. Y. Lin, W. Y. Weng, C. L. Hsu, T. Y. Tsai, B. T. Dai and J. M. Shieh, “Crystalline-Si photovoltaic devices with ZnO nanowires”, Solar Energy Materials & Solar Cells, vol. 98, pp, 494–498, 2012.
[16] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight”, Appl. Phys. Lett. vol. 94, Art. no. 223504, 2009.
[17] C. Y. Tseng. C. K. Lee and C. T. Lee, “Performance enhancement of III–V compound multijunction solar cell incorporating transparent electrode and surface treatment”, Progress in Photovoltaics, vol. 19, pp. 436–441, 2011.
[18] S. L.Diedenhofen, G. Grzela, E. Haverkamp, G. Bauhuis, J. Schermer and J. G. Rivas, “Broadband and omnidirectional anti-reflection layer for III/V multi-junction solar cells”, Solar Energy Materials & Solar Cells, vol. 101, pp. 308–314, 2012.
[19] P. K. H. Ho, D. S. Thomas, R. H. Friend and N. Tessler, “All-polymer optoelectronic devices”, Science, vol. 285, pp. 233–236, 1999.
[20] J. K. Kim, J. Q. Xi and E. F. Schubert, “Omni-directional reflectors for light-emitting diodes”, Proc. SPIE, vol. 6134, pp. 61340D-1–61340D-12, 2012.
[21] C. J. Ting, C. F. Chen and C. P. Chou, “Subwavelength structures for broadband antireflection application”, Optics Communications, vol. 282, pp. 434–438, 2009.
[22] R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating”, JOURNAL OF APPLIED PHYSICS, vol. 110, pp. 113105, 2011.
Chapter 5
[1] S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol. 363, pp. 134-138, 2002.
[2] S. J. Young, L. W. Ji, S. J. Chang, and X. L. Du, “ZnO metal semiconductor metal ultraviolet photodiodes with Au contacts”, J. Electrochem. Soc., vol. 154, pp. H26-H29, 2007.
[3] Cheng-Liang Hsu, Shoou-Jinn Chang, Yan-Ru Lin, Pin-Chou Li, Tzer-Shen Lin, Song-Yeu Tsai, Tsung-Heng Lu, and I-Cherng Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires”, Chem. Phys. Lett., vol. 416, pp. 75-78, 2005.
[4] K.J. Chen, F.Y. Hung, S.J. Chang, and S.J. Young, "Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films”, J. Alloy. Compd., vol. 479, pp. 674-677, 2009.
[5] Liang Guo, Hong Zhang, Dongxu Zhao, Binghui Li, Zhenzhong Zhang, Mingming Jiang, Dezhen Shen, “High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method”, Sensor Actuat B-Chem., vol. 166, pp. 12-16, 2012.
[6] Qing Yang, Ying Liu, Zetang Li, Zongyin Yang, Xue Wang, and Zhong Lin Wang, “Self-Powered Ultrasensitive Nanowire Photodetector Driven by a Hybridized Microbial Fuel Cell”, Angew. Chem., vol. 51, pp. 6443-6446, 2012.
[7] Ya-Qing Bie, Zhi-Min Liao, Hong-Zhou Zhang, Guang-Ru Li, Yu Ye, Yang-Bo Zhou, Jun Xu, Zhi-Xin Qin, Lun Dai, and Da-Peng Yu, “Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions”, Adv. Mater., vol. 23, pp. 649-653, 2011.
[8] Zhiming Bai, Xiaoqin Yan, Xiang Chen, Hanshuo Liu, Yanwei Shen, Yue Zhang, “ZnO nanowire array ultraviolet photodetectors with self-powered properties”, Curr. Appl. Phys., vol. 13, pp. 165-169, 2013.
[9] C. Y. Tseng. C. K. Lee and C. T. Lee, “Performance enhancement of III-V compound multijunction solar cell incorporating transparent electrode and surface treatment”, Prog. Photovoltaics, vol. 19, pp. 436-441, 2011.
[10] Yongning He, Wen Zhang, Songchang Zhang, Xue Kang, Wenbo Peng, Youlong Xu, “Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array”, Sensor Actuat A-Phys, vol. 181, pp. 6-12, 2012.
[11] Apurba Dev, Abdelhamid Elshaer, Tobias Voss, “Optical Applications of ZnO Nanowires”, IEEE J. Sel. Top. Quant. Electron, vol. 17, pp. 896-906, 2011.
[12] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., vol. 15, pp. 464-466, 2003.
[13] Yen-Chun Chao, Cheng-Ying Chen, Chin-An Lin, Yu-An Dai and Jr-Hau He, “Antireflection effect of ZnO nanorod arrays”, J. Mater. Chem., vol. 20, pp. 8134-8138, 2010.
[14] T. J. Hsueh, S. Y. Lin, W. Y. Weng, C. L. Hsu, T. Y. Tsai, B. T. Dai and J. M. Shieh, “Crystalline-Si photovoltaic devices with ZnO nanowires”, Sol. Energy Mater. Sol. Cells, vol. 98, pp. 494-498, 2012.
[15] Hung-Hsien Li, Po-Yu Yang, Si-Ming Chiou, Han-Wen Liu, and Huang-Chung Cheng, “A Novel Coaxial-Structured Amorphous-Silicon p-i-n Solar Cell With Al-Doped ZnO Nanowires”, IEEE Electron Device Lett., vol. 32, pp. 928-930, 2011.
[16] I. Hussain, M. Y. Soomro, N. Bano, O. Nur, and M. Willander, “Interface trap characterization and electrical properties of Au-ZnO nanorod Schottky diodes by conductance and capacitance methods”, J. Appl. Phys., vol. 112, art. no. 064506, pp. 1-6, 2012.
[17] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain”, Nano Lett., vol. 7, 1003-1009, 2007.
Chapter 6
[1] Qing Yang, Ying Liu, Zetang Li, Zongyin Yang, Xue Wang, and Zhong Lin Wang: Angew. Chem. 124 (2012) 6549.
[2] Ya-Qing Bie, Zhi-Min Liao, Hong-Zhou Zhang, Guang-Ru Li, Yu Ye, Yang-Bo Zhou, Jun Xu, Zhi-Xin Qin, Lun Dai, and Da-Peng Yu: Adv. Mater. 23 (2011) 649.
[3] Weifeng Jin, Yu Ye, Lin Gan, Bin Yu, Peicai Wu, Yu Dai, Hu Meng, Xuefeng Guo and Lun Dai: J. Mater. Chem. 22 (2012) 2863.
[4] Sanghwa Yoon, Jae-Hong Lim, and Bongyoung Yoo: Applied Physics Express 5 (2012) 105003.
[5] Ghusoon M. Ali and Parthasarathi Chakrabarti: J. Vac. Sci. Technol. B 30 (2012) 031206.
[6] Ghusoon M Ali and P Chakrabarti: Journal of Physics D Applied Physics 43 (2010) 415103.
[7] Zhen Bi, Jingwen Zhang, Xuming Bian, Dong Wang, Xin’an Zhang, Weifeng Zhang, Xun Hou: Journal of Electronic Materials 37 (2008) 760.
[8] Ming-Wei Chen, Cheng-Ying Chen, Der-Hsien Lien, Yong Ding, and Jr-Hau He: Optics Express 18 (2010) 14836.
[9] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang: Nano Lett. 7 (2007) 1003.
[10] S. P. Chang, C. Y. Lu, S. J. Chang, Y. Z. Chiou, T. J. Hsueh and C. L. Hsu: IEEE J. Sel. Top. Quan. Electron. 17 (2011) 790.
[11] W. Y. Weng, S. J. Chang, C. L. Hsu and T. J. Hsueh: ACS Appl. Mater. Interfaces 3 (2011) 162.
[12] L. W. Ji, T. H. Fang, C. Z. Wu, T. T. Chu, H. L. Jiang, S. J. Chang, S. M. Peng, J. C. Zhong and W. Y. Chang: J. Nanoelectron. Optoelectron. 5 (2010) 295.
[13] L. Vayssieres: Adv. Mater. 15 (2003) 464.
[14] Yen-Chun Chao, Cheng-Ying Chen, Chin-An Lin, Yu-An Dai and Jr-Hau He: J. Mater. Chem. 20, 8134 (2010).
[15] Yun-Ju Lee, Douglas S. Ruby, David W. Peters, Bonnie B. McKenzie, and Julia W. P. Hsu: Nano Lett. 8 (2008) 1501.
[16] T. J. Hsueh, S. Y. Lin, W. Y. Weng, C. L. Hsu, T. Y. Tsai, B. T. Dai and J. M. Shieh: Sol. Energy Mater. Sol. Cells 98 (2012) 494.
[17] C. P. Liu, Z. H. Chen, H. E. Wang, S. K. Jha, W. J. Zhang, I. Bello, and J. A. Zapien: Appl. Phys. Lett. 100 (2012) 243102.
[18] Sachindra Nath Das, Kyeong-Ju Moon, Jyoti Prakash Kar, Ji-Hyuk Choi, Junjie Xiong, Tae Il Lee, and Jae-Min Myoung: Appl. Phys. Lett. 97 (2010) 022103.
[19] Sachindra Nath Das, Ji-Huck Choi, Jyoti Prakash Kar, Kyeong-Ju Moon, Tae Il Lee, and Jae-Min Myoung: Appl. Phys. Lett. 96 (2010) 092111.
[20] C. Y. Tseng. C. K. Lee and C. T. Lee: Progress in Photovoltaics 19 (2011) 436.
校內:2023-12-31公開