| 研究生: |
李宜珊 Lee, Yi-San |
|---|---|
| 論文名稱: |
研究LY294002@PLGA奈米藥物誘發內質網壓力的相關機轉 Studying mechanisms underlying ER-stress induction by LY294002@PLGA nanodrug |
| 指導教授: |
蘇五洲
Su, Wu-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 2-嗎啉-4-基-8-苯基-4H-色烯-4-酮 、聚乳酸聚乙醇酸共聚物 、絲氨酸/ 蘇氨酸激酶 (蛋白激酶 B) 、细胞外調節蛋白激酶 、內質網逆境 、未折疊蛋白質反應 |
| 外文關鍵詞: | LY294002, PLGA, Akt, ERK, ER stress, UPR |
| 相關次數: | 點閱:145 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在肺癌及許多癌症中,激活的磷脂醯肌醇3-激酶 (PI3K)/蛋白激酶B (Akt)訊息傳遞路徑會調控許多細胞功能。LY294002 (LY, 2-嗎啉-4-基-8-苯基-4H-色烯-4-酮)是一種能有效抑制PI3K活性的小分子抑制劑,並且已證實LY294002在活體內與活體外實驗中皆具有抑制腫瘤的良好效果。但其抑制專一性、不佳水溶性和未知的副作用等特性侷限LY294002在生物體上的應用。然而在癌症治療上,LY294002在開發良好有效的藥物時提供了關鍵的角色。聚乳酸聚乙醇酸共聚物 (poly lactic-co-glycolic acid; PLGA)是一種可被生物降解的奈米材料,常被用於藥物傳遞的載體。本研究使用ethanol titration method 和two emulsion method兩種不同的合成方式,將LY294002包裹於無表面活性劑的PLGA中,進而發展出獨特的奈米藥物 (LY294002@PLGA) 以改善LY294002的療效。在先前的研究中,意外地發現LY294002@PLGA能增進細胞死亡的現象與其誘發顯著的內質網壓力(endoplasmic reticulum stress)有關,但目前對於LY294002@PLGA如何誘發內質網壓力和其相關機轉仍待研究。因此本實驗使用四種內質網壓力誘導劑 (tunicamycin、thapsigargin、brefeldin A和DBeQ)處理不同的肺癌細胞 (H460、H157和H1650) 藉此探索其相關作用機制;比較上述的內質網壓力誘導劑、LY294002和LY294002@PLGA對細胞的反應,進而了解內質網壓力所誘導的相關機轉。使用動態光散射儀和高效液相層析儀分析LY294002@PLGA的特性,分析結果顯示,使用ethanol titration method合成的LY294002@PLGA,平均直徑和藥物包裹率為94.02±5.05 nm和6.35±0.03%;而使用two emulsion method合成的LY294002@PLGA,平均直徑和藥物包裹率為174.5±3.29 nm和54.66%±3.81%。經由MTT試驗證實在三株肺癌細胞中,LY294002@PLGA能增進對細胞的毒殺效果,並且PLGA無明顯的細胞毒性。此外,經過LY294002@PLGA處理後的細胞, Akt和ERK的活性能同時且持續地被抑制。Unfolded protein response (UPR)包括ATF6、PERK以及IRE1三條訊息傳遞路徑,誘發不同程度的內質網壓力會活化不同的UPR傳遞路徑趨使細胞存活或走向死亡。三株肺癌細胞分別經過tunicamycin和thapsigargin處理後,所有UPR路徑皆被活化使細胞存活,然而部分的PERK-ATF4-CHOP路徑活化卻趨使細胞走向死亡。Brefeldin A活化IRE1及PERK路徑,並且由於CHOP和磷酸化JNK表現量上升趨使細胞傾向凋亡。而DBeQ只活化PERK路徑增進細胞凋亡。細胞處理LY294002後只會誘導輕微的內質網壓力,但經過LY294002@PLGA處理後,細胞不僅誘發嚴重的內質網壓力產生,更藉由PERK-ATF4-CHOP路徑的活化促使細胞趨向凋亡。與上述的內質網壓力誘導劑比較,只有含缬酪肽蛋白(VCP)的抑制劑DBeQ與LY294002@PLGA具有相似的內質網壓力機制而增進細胞死亡。因此,VCP在LY294002@PLGA所誘發的細胞死亡機制中可能扮演重要的角色。我們的研究證實,LY294002@PLGA由於誘導嚴重的內質網壓力產生及持續地抑制Akt和ERK的活性,達到加強細胞的毒殺效果,並且藉由活化PERK-ATF4-CHOP路徑增進細胞凋亡。在未來癌症研究上,LY294002@PLGA奈米藥物具有藥物開發的潛力。
The phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (Akt) signaling pathway has been activated and regulated a variety of cellular processes in many cancers and lung cancer as well. LY294002 is a potent inhibitor of PI3K activity and also has been demonstrated having antitumor activity in vitro and in vivo. While its restrictive bio-application such as poor specificity, solubility, potential side effects and cytotoxicity offer us the key to an understanding of therapeutic efficacy of LY294002. PLGA is a biodegradable nanomaterial that can be used as a favorable carrier for drug delivery. We have developed LY294002-loaded surfactant-free poly lactic-co-glycolic acid nanoparticles (LY294002@PLGA) synthesized by two methods, ethanol titration and two emulsion, to improve therapeutic effects. In our research, LY294002@PLGA unexpectedly increases cancer cell death with its profound endoplasmic reticulum (ER) stress. However, insufficient information is available about ER stress induced and its underlying mechanisms activated by LY294002@PLGA. In this study, lung cancer cell lines (H460, H157 and H1650) treated with various ER stress-related inducers (tunicamycin, thapsigargin, brefeldin A, and DBeQ) for exploring the underlying mechanisms. The cellular responses between these agents, free form LY294002 and LY294002@PLGA will be compared and reserved for further study. Characterizations of nanoparticles synthesized by two methods were analyzed using dynamic light scattering (DLS) and high-performance liquid chromatography (HPLC). The mean diameter and encapsulation efficiency of LY294002@PLGA synthesized by ethanol titration method was 94.02±5.05 nm and 6.35±0.03%, by two emulsion method was 174.5±3.29 nm and 54.66%±3.81%. Determined by MTT assay, the cell cytotoxicity of LY294002@PLGA was enhanced, and no obvious toxicity of PLGA nanoparticles in three lung cancer cell lines. In addition, LY294002@PLGA treatment sustained suppressed Akt and ERK activations simultaneously. Unfolded protein response (UPR) including activating transcription factor 6 (ATF6), PKR-like ER kinase (PERK) and inositol requiring enzyme 1 (IRE1), are activated for cell survival or death in different ER stress conditions. After tunicamycin and thapsigargin treatments, all of UPR pathways were induced for survival, but PERK-ATF4-CHOP pathway was activated for cell death in three lung cancer cell lines. Cells treated with brefeldin A were induced to express PERK and IRE1 pathways but not ATF6 pathway, and were more susceptible to apoptosis because of CHOP and phosphorylated JNK elevation. Only PERK pathway was activated by DBeQ to increase apoptotic cell death. Cells treated with LY294002 caused slight ER stress for cell survival. By LY294002@PLGA, cells were induced profound ER stress and caused apoptotic cell death through PERK-ATF4-CHOP pathway. Compared with the tested ER stress-related inducers, only DBeQ, valosin-containing protein (VCP) inhibitor, had similar ER stress-derived mechanism of action with LY294002@PLGA. Therefore, VCP may play an important role in LY294002@PLGA-derived cell death. These findings confirmed that both ER-stress induction and sustained suppression of Akt and ERK by LY294002@PLGA resulted in profound cytotoxic activity and cell apoptosis improved through PERK-ATF4-CHOP pathway. LY294002@PLGA may be a potential developed drug for cancer therapy in the future.
References:
Aleka (2010). Nanotechnology in Medicine and Health. 1–34.
Baines, A.T., Xu, D., and Der, C.J. (2011). Inhibition of Ras for cancer treatment: the search continues. 3, 1787–1808.
Blanco, E., Kessinger, C.W., Sumer, B.D., and Gao, J. (2009). Multifunctional Micellar Nanomedicine for Cancer Therapy. Experimental Biology and Medicine 234, 123–131.
Chang, F., Lee, J.T., Navolanic, P.M., Steelman, L.S., Shelton, J.G., Blalock, W.L., Franklin, R.A., and McCubrey, J.A. (2003). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590–603.
Chen, Y., and Brandizzi, F. (2013). IRE1: ER stress sensor and cell fateexecutor. Trends in Cell Biology 23, 547–555.
Cheng, F.-Y., Wang, S.P.-H., Su, C.-H., Tsai, T.-L., Wu, P.-C., Shieh, D.-B., Chen, J.-H., Hsieh, P.C.-H., and Yeh, C.-S. (2008). Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 29, 2104–2112.
Chou, T.-F., and Deshaies, R.J. (2011). Development of p97 AAA ATPase inhibitors. Autophagy 7, 1091–1092.
Esmaeili, F., Ghahremani, M.H., Esmaeili, B., Khoshayand, M.R., Atyabi, F., and Dinarvand, R. (2008). PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. International Journal of Pharmaceutics 349, 249–255.
Fels, D.R., and Koumenis, C. (2014). The PERK/eIF2α/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biology & Therapy 5, 723–728.
Garcia-Echeverria, C., and Sellers, W.R. (2008). Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27, 5511–5526.
Garlich, J.R., De, P., Dey, N., Su, J.D., Peng, X., Miller, A., Murali, R., Lu, Y., Mills, G.B., Kundra, V., et al. (2008). A Vascular Targeted Pan Phosphoinositide 3-Kinase Inhibitor Prodrug, SF1126, with Antitumor and Antiangiogenic Activity. Cancer Research 68, 206–215.
Gaumet, M., Gurny, R., and Delie, F. (2009). Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur J Pharm Sci 36, 465–473.
Gharbi, S.I., Zvelebil, M.J., Shuttleworth, S.J., Hancox, T., Saghir, N., Timms, J.F., and Waterfield, M.D. (2007). Exploring the specificity of the PI3K family inhibitor LY294002. Biochem. J. 404, 15.
Gunn, R.M., and Hailes, H.C. (2008). Insights into the PI3-K-PKB-mTOR signalling pathway from small molecules. J Chem Biol 1, 49–62.
Gupta, A.K., Cerniglia, G.J., Mick, R., Ahmed, M.S., Bakanauskas, V.J., Muschel, R.J., and McKenna, W.G. (2003). Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. International Journal of Radiation Oncology*Biology*Physics 56, 846–853.
Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5, 897–904.
Hawker, C.J., and Wooley, K.L. (2005). The Convergence of Synthetic Organic and Polymer Chemistries. Science 309, 1200–1205.
Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10, 3787–3799.
Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y., and Mills, G.B. (2005). Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery. Nat Rev Drug Discov 4, 988–1004.
Hosoi, T., Hyoda, K., Okuma, Y., Nomura, Y., and Ozawa, K. (2007). Akt up- and down-regulation in response to endoplasmic reticulum stress. Brain Res 1152, 27–31.
Hou, C.-C., Tsai, T.-L., Su, W.-P., Hsieh, Yeh, Shieh, and Su, W.-C. (2013). Pronounced induction of endoplasmic reticulum stress and tumor suppression by surfactant-free poly (lactic-co-glycolic acid) nanoparticles via modulation of the PI3K signaling pathway. Ijn 2689.
Hu, L., Zaloudek, C., Mills, G.B., Gray, J., and Jaffe, R.B. (2000). In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clinical Cancer Research 6, 880–886.
Hu, P., Han, Z., Couvillon, A.D., and Exton, J.H. (2004). Critical Role of Endogenous Akt/IAPs and MEK1/ERK Pathways in Counteracting Endoplasmic Reticulum Stress-induced Cell Death. Journal of Biological Chemistry 279, 49420–49429.
Hyoda, K., Hosoi, T., Horie, N., Okuma, Y., Ozawa, K., and Nomura, Y. (2006). PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells. Biochemical and Biophysical Research Communications 340, 286–290.
Jalil, R., and Nixon, J.R. (1990). Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencapsul 7, 297–325.
Knight, Z.A., and Shokat, K.M. (2007). Chemically targeting the PI3K family. Biochem. Soc. Trans. 35, 245–249.
Kobayashi, H., Watanabe, R., and Choyke, P.L. (2013). Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4, 81–89.
Kobayashi, T., Tanaka, K., Inoue, K., and Kakizuka, A. (2002). Functional ATPase Activity of p97/Valosin-containing Protein (VCP) Is Required for the Quality Control of Endoplasmic Reticulum in Neuronally Differentiated Mammalian PC12 Cells. Journal of Biological Chemistry 277, 47358–47365.
Kunnimalaiyaan, M., Ndiaye, M., and Chen, H. (2006). Apoptosis-mediated medullary thyroid cancer growth suppression by the PI3K inhibitor LY294002. Surgery 140, 1009–1015.
Lammers, T., Hennink, W.E., and Storm, G. (2008). Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99, 392–397.
Lin, J.H., Li, H., Yasumura, D., Cohen, H.R., Zhang, C., Panning, B., Shokat, K.M., Lavail, M.M., and Walter, P. (2007). IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949.
Liu, J.-J., and Duan, R.-D. (2009). LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells. Anticancer Res 29, 2987–2991.
Liu, Y., Miyoshi, H., and Nakamura, M. (2007). Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537.
Lytton, J., Westlin, M., and Hanley, M.R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. Jbc.org.
Ma, Y., Brewer, J.W., Alan Diehl, J., and Hendershot, L.M. (2002). Two Distinct Stress Signaling Pathways Converge Upon the CHOP Promoter During the Mammalian Unfolded Protein Response. Journal of Molecular Biology 318, 1351–1365.
Makadia, H.K., and Siegel, S.J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 3, 1377–1397.
Marone, R., Cmiljanovic, V., Giese, B., and Wymann, M.P. (2007). Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784, 159–185.
McCall, R.L., and Sirianni, R.W. (2013). PLGA Nanoparticles Formed by Single- or Double-emulsion with Vitamin E-TPGS. JoVE.
McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W.T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research 1773, 1263–1284.
Mendoza, M.C., Er, E.E., and Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends in Biochemical Sciences 36, 320–328.
Mimnaugh, E.G. (2006). Endoplasmic Reticulum Vacuolization and Valosin-Containing Protein Relocalization Result from Simultaneous Hsp90 Inhibition by Geldanamycin and Proteasome Inhibition by Velcade. Molecular Cancer Research 4, 667–681.
Misumi, Y., Misumi, Y., Miki, K., Takatsuki, A., Tamura, G., and Ikehara, Y. (1986). Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261, 11398–11403.
Moenner, M., Pluquet, O., Bouchecareilh, M., and Chevet, E. (2007). Integrated Endoplasmic Reticulum Stress Responses in Cancer. Cancer Research 67, 10631–10634.
Moghimi, S.M. (2005). Nanomedicine: current status and future prospects. The FASEB Journal 19, 311–330.
Nakamura, J.L., Karlsson, A., Arvold, N.D., Gottschalk, A.R., Pieper, R.O., Stokoe, D., and Haas-Kogan, D.A. (2005). PKB/Akt mediates radiosensitization by the signaling inhibitor LY294002 in human malignant gliomas. J Neurooncol 71, 215–222.
Nishitoh, H. CHOP is a multifunctional transcription factor in the ER stress response.
Nishitoh, H.K.A.H. (2013). Signaling Pathways from the Endoplasmic Reticulum and Their Roles in Disease. 1–28.
O Thastrup, P.J.C.B.K.D.M.R.H.A.P.D. (1990). Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proceedings of the National Academy of Sciences of the United States of America 87, 2466.
Osaki, M., Oshimura, M., and Ito, H. (2004). PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667–676.
Paez, J., and Sellers, W.R. PI3K/PTEN/Akt Pathway (Springer US).
Posch, C., Moslehi, H., Feeney, L., Green, G.A., Ebaee, A., Feichtenschlager, V., Chong, K., Peng, L., Dimon, M.T., Phillips, T., et al. (2013). Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proceedings of the National Academy of Sciences 110, 4015–4020.
Roberts, P.J., and Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310.
Roy, S.K., Srivastava, R.K., and Shankar, S. (2010). Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal 5, 10.
Sarker, D., Reid, A.H.M., Yap, T.A., and de Bono, J.S. (2009). Targeting the PI3K/AKT Pathway for the Treatment of Prostate Cancer. Clinical Cancer Research 15, 4799–4805.
Schäfer, P. (2012). The endoplasmic reticulum in plant immunity and cell death. 1–6.
Semba, S., Itoh, N., Ito, M., Harada, M., and Yamakawa, M. (2002). The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3'-kinase, in human colon cancer cells. Clinical Cancer Research 8, 1957–1963.
She, Q.-B., Solit, D.B., Ye, Q., O’Reilly, K.E., Lobo, J., and Rosen, N. (2005). The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8, 287–297.
Shen, J., Chen, X., Hendershot, L., and Prywes, R. (2002). ER Stress Regulation of ATF6 Localization by Dissociation of BiP/GRP78 Binding and Unmasking of Golgi Localization Signals. Developmental Cell 3, 99–111.
Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., and Rudzinski, W.E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70, 1–20.
Srinivasan, S., Ohsugi, M., Liu, Z., Fatrai, S., Bernal-Mizrachi, E., and Permutt, M.A. (2005). Endoplasmic Reticulum Stress-Induced Apoptosis Is Partly Mediated by Reduced Insulin Signaling Through Phosphatidylinositol 3-Kinase/Akt and Increased Glycogen Synthase Kinase-3 in Mouse Insulinoma Cells. Diabetes 54, 968–975.
Steelman, L.S., Stadelman, K.M., Chappell, W.H., Horn, S., Basecke, J., Cervello, M., Nicoletti, F., Libra, M., Stivala, F., Martelli, A.M., et al. (2008). Akt as a therapeutic target in cancer. Expert Opin. Ther. Targets 12, 1139–1165.
Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880–885.
Takatsuki, A., Kohno, K., and Tamura, G. Inhibition of Biosynthesis of Polyisoprenol Sugars in Chick Embryo Microsomes by Tunicamycin.
TKACZ, J.S., and LAMPEN, J.O. (1975). Tunicamycin Inhibition of Polyisoprenyl N-Acetylglucosaminyl Pyrophosphate Formation in Calf-Liver Microsomes. Biochemical and Biophysical Research Communications 65, 248–257.
Vara, J.Á.F., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C., and González-Barón, M. (2004). PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews 30, 193–204.
Vivanco, I., and Sawyers, C.L. (2002). The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat. Rev. Cancer. 2, 489–501.
Wang, M., and Kaufman, R.J. (2014). The impact of the endoplasmicreticulum protein-folding environmenton cancer development. Nature Publishing Group 14, 581–597.
Wang, S., and Kaufman, R.J. (2012). The impact of the unfolded protein response on human disease. The Journal of Cell Biology 197, 857–867.
Wey, S., Luo, B., Tseng, C.-C., Ni, M., Zhou, H., Fu, Y., Bhojwani, D., Carroll, W.L., and Lee, A.S. (2012). Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling. Blood 119, 817–825.
Wu, J., and Kaufman, R.J. (2006). From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ. 13, 374–384.
Xu, C., Bailly-Maitre, B., and Reed, J.C. (2005). Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115, 2656–2664.
Yajima, I., Kumasaka, M.Y., Thang, N.D., Goto, Y., Takeda, K., Yamanoshita, O., Iida, M., Ohgami, N., Tamura, H., Kawamoto, Y., et al. (2012). RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy. Dermatology Research and Practice 2012, 1–5.
Yap, T.A., Garrett, M.D., Walton, M.I., Raynaud, F., de Bono, J.S., and Workman, P. (2008). Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Current Opinion in Pharmacology 8, 393–412.
校內:2017-02-01公開