| 研究生: |
朱胤碩 Chu, Yin-Shuo |
|---|---|
| 論文名稱: |
熱機處理對鑄造Ti-7.5Mo合金結構與機械性質之研究 Study of thermomechanical treatment on structure and mechanical properties of cast Ti-7.5Mo alloys |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鈦 、鉬 、強化處理 、α” |
| 外文關鍵詞: | titanium, molybdenum, strengthening treatment, α” |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗藉由對Ti-7.5Mo合金進行不同的強化處理,探討其金相與機械性質的關係,Ti-7.5Mo在經過強化處理1,呈現α’+β相,具有與鑄造的商用Ti-6Al-4V (ELI)較相近之拉伸性質,降伏強度為946MPa、最大拉伸強度為1339MPa、伸長量5.1%、彈性模數為104GPa,與鑄造的商用Ti-6Al-4V (ELI)比較,具有較高的拉伸強度、較低的伸長量、較低的彈性模數,適合用於骨板的製作,而經過強化處理2後,其強度大幅下降,但伸長量大幅提升,其性質較趨近於Ti-7.5Mo as cast。
在強化處理3條件X3~X5,Y3~Y6,其呈現α”相,其拉伸強度都較強化處理2之拉伸強度高,且隨著強化處理3條件的改變,其強化效果越強。而進行強化處理3條件X6,隨著Y3增加至Y6,其強度反而隨之降低。
In this study, the Ti-7.5Mo alloy of different strengthening treatment, to discuss the relationship between microstructure and mechanical properties. The Ti-7.5Mo with Strengthening Treatment 1 showing α’+β phase is similar to the tensile properties with the casting of commercial Ti-6Al-4V (ELI). The yield strength is 946MPa, the maximum tensile strength is 1339MPa, the elongation is 5.1%, the elastic modulus is 104GPa. To compare with the casting of the commercial Ti-6Al-4V (ELI), the Ti-7.5Mo with Strengthening Treatment 1 with higher tensile strength, lower elongation, lower modulus of elasticity, and suitable for the production of bone plates. The strength decrease greatly but the elongation rise highly after Strengthening Treatment 2. The mechanical properties are more like Ti-7.5Mo as cast.
After Strengthening Treatment 3, Condition X3~ X5, Y3 to Y6, it is present α" phase, the tensile strength is higher than the Strengthening Treatment 2 and with the Strengthening Treatment 3 condition changes, the strengthened effect is stronger, while the Strengthening Treatment 3 Condition X6, with Y3 changing to Y6, the strength is decreases.
F. Sun, F. Prima, T. Gloriant, “High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor”, Materials Science and Engineering A 527 4262–4269, 2010.
D.A Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys” second edition, CRC Press, USA, 2004.
Rengen Ding, Ian Pjones and Huisheng Jiao, “Effect of Mo and Hf on the mechanical properties and microstructure of Nb–Ti–C alloys”, Elsevier B.V, 2007.
Sujata V.Bhat, “Biomaterials, 2nd Edition”, Alpha Science International, Ltd , 2005.
Y.L. Zhou, M. Niinomi, T. Akahori, “Decomposition of martensite α” during aging treatment and resulting mechanical properties of Ti-Ta alloys”, Materials Science and Engineering A, 371, 283-290, 2004.
G. He, M. Hagiwara, “Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus”, Materials Science and Engineering C 25 290 – 295, 2005.
Bania PJ., “Beta titanium alloys and their role in the titanium industry”, In: Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.
Blackburn MJ and Williams JC., “Phase transformation in Ti-Mo and Ti-V alloys”, Trans Metal Soc AIME, 242:2461-9, 1968.
Mitsuo Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications”, journal of the Mechanical behavior of biomedical materials I, 30–42, 2008.
Cheal E, Spector M, Hayes W. “Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty”, J Orthop Res ; 10:405-422.1992.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annual International Biomaterial Symposium, April 20-24, 1974.
Davis R., “Martensitic transformations in Ti-Mo alloys”, Journal of materials science v14,P712-722, 1979.
Donachie Jr. M. J., Titanium A Technical Guide, ASM International, Metal Park Ohio, 1989.
Fedotov SG. “Peculiarities of Changes in Elastic Properties of Ti Martensite”, Titanium Science and Technology , 2:871-81.1973.
Furuhara. T, Maki. T., Makino. T. “Microstructure control by thermomechanical processing in β-Ti-15-3 alloy”, Journal of Materials Processing Technology, 117, 318-323, 2001.
Hansson S. “A conical implant–abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone”, Clin Implant Dent Relat Res , 2(1):33-41.2000.
Ho WF, Ju CP and Chern Lin JH. “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20:2115-22, 1999.
Koeneman JB, Hansen TM, Toal TR. “Effects of implant geometry position and boundary conditions on cancellous bone stresses: a finite element analysis”, Proceedings of Biomechanics Symposium, 120:117-120, 1991.
Lewis JL, Askew MJ, Wixson RL, Kramer GM, Tarr RR. “The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component”, J Bone Jt Surg, 66A:280-286, 1984.
Metal Park, Titanium a technical guide, ASM International, Oh44073., P.14, 1998.
Molchanova EK, “phase diagrams of titanium alloys” [transl. of Atlas diagram sostoyaniya titanovyk splavov], Israel program for scientific translations, Jerusalem, 1965.
Smith W.F., “Structure and Properties of Engineering Alloys”, McGraw-Hill, Inc., USA, 433-484, 1993.
Wolff J, “Das Gesetz Der Transformation Der Knochen”, Hirshwald Verlag, Berlin, 1892.
X.H. Min, S. Emura, T. Nishimura, L. Zhang, S. Tamilselvi, K. Tsuchiya, K. Tsuzaki, “Effects of _ phase precipitation on crevice corrosion and tensile strength in Ti–15Mo alloy”, Materials Science and Engineering, 2009.
Pei-Wen Peng, Keng-Liang Ou, Chih-Yeh Chao, Yung-Ning Pan, Chau-Hsiang Wang, “Research of microstructure and mechanical behavior on duplex (α+β) Ti–4.8Al–2.5Mo–1.4V alloy”, Journal of Alloys and Compounds, 2009.
葉哲政/金屬中心, “生醫用金屬產業全局佈局與競爭策略”, 2005.
侯貫智, “環保成為海綿鈦製成的焦點議題”, ITIS產業評析專欄, 2008.
曾婉如, “鈦金屬”, 金屬材料月報, 2011.
施詠堯, “噴覆成型與連續鑄造6063鋁合金之微結構、機械性質與成型性質之研究”, 成功大學材料工程研究所碩士論文, 2003.
校內:2021-12-31公開