研究生: |
方忠浩 Fang, Chung-Hao |
---|---|
論文名稱: |
圓柱表面流場在預臨界區之特性探討 Investigations of Flows Around a Circular Cylinder in the Pre-Critical Regime |
指導教授: |
苗君易
Miau, Jiun-Jih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 預臨界圓柱流場 、小波轉換 、相關性分析 、可撓式熱膜感測器 |
外文關鍵詞: | sub-critical regime, pre-critical regime, flow over a circular cylinder, Wavelet transformation, correlation analysis, MEMS sensors |
相關次數: | 點閱:106 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨詳述流場由次臨界雷諾數進入到預臨界區流場的邊界層初始層─紊流轉換特性,特別針對隨著時間有顯著變化的訊號做細部探討,以實驗方法探討圓柱流場於雷諾數介於1.53×105~3.50×105間之特性。實驗首先量測基部壓力隨雷諾數變化的情形,再利用圓柱左右兩側的壓力係數來判斷圓柱表面流場於預臨界區前後情況,並利用可撓式熱膜感測器(MEMS)平貼於圓柱表面以熱絲感測器(Thermal tuft)的工作原理判斷圓柱表面流場之流動分離現象。吾人利用小波轉換分析法獲得瞬時渦流溢放頻率,統計訊號於各個時間點變化之特性,並輔以相關性分析,得以獲知圓柱兩側流場之對稱性質,透過觀測尾流的訊號亦可發現尾流寬度的變化。由於流場進入到臨界區時,渦流溢放頻率挾帶著三維低頻擾動因此吾人利用經驗模態分離法將低頻擾動濾出,得以觀察圓柱兩側三維性現象。
其主要的發現有:在兩次實驗中分別觀測到Re=2.40×105 與Re=2.54×105時,此定流速下存在著兩種不同性質的流場,即本文所指狀態A流場與狀態B流場,其流體行為分別隸屬於預臨界區與次臨界區的流場特徵,隨著雷諾數增加流場從狀態B型態進入到狀態A型態,從具有高週期性的渦流溢放行為轉為較低週期性的渦流溢放行為,且狀態A流場的渦流溢放有著低頻擾動現象,狀態B流場尾流寬度較狀態A寬,從狀態B流場進入到狀態A流場的分離位置有向下游移動的趨勢。
Experiments were carried out on flow over a circular cylinder at Reynolds number 1.53×105~3.50×105. Pressure measurements on the cylinder surface were made to obtain the base pressure coefficient CPb, and the distribution of CP on the cylinder surface in the pre-critical regime. In addition, thermal tuft method was used to sense the flow-direction on the cylinder surface.
By examining the pressure signals measured on the two sides of the cylinder surface, it is found that the raw signals contain two fluctuating components mainly, one is due to the vortex shedding frequency and the other is due to the low frequency modulation. The two components could be separated by the empirical mode decomposition (EMD). Subsequently, the correlation analysis of each component with respect to the pressure signals obtained on the two sides of the cylinder was carried out.
The major finding of this study is that the States A and B can be bi-stably existed at a fixed free stream speed, evidenced by two separate experiments. While the state A bears the characteristics of flow in the pre-critical regime, the state B bears the characteristics of flow in the sub-critical regime. This finding unveils the flow behavior of transition from the sub-critical regimes to pre-critical regimes.
[1] Taylor, G. I., “Pressure Distribution Round the Cylinder,” Advisory Committee of Aeronautics., Rep. & Memo 191, 1916.
[2] Fage, A. and Johansen, F. C., “The Structure if Vortex Sheets,” Philosophical Magazine., 7th Series, Vol.5, pp. 417-441, 1928.
[3] Morkovin, M. V., “Flow Around Circular Cylinders,” Proceedings ASME Symposium on Fully Separated Flow, Philadelphia., pp. 102-118, 1964.
[4] Strouhal, V., “On a Particular Way of Tone Generation,” Wiedemann’s Annalen Physik und Chemie., Vol.5, pp. 216-251, 1878.
[5] Williamson, C. H. K., “Vortex dynamics in the Cylinder Wake,” J Fluid Mech., Vol.28, pp. 477-539, 1996.
[6] Schewe, G., “Reynolds Number Effects in Flow Around More-or-less Bluff Bodies,” Journal of Wind Engineering and Industrial Aerodynamics., Vol.89, pp 1267-1289, 2001.
[7] Nikias, N., Macdonald, J. H. G., Andersen, T. L., Jakobsen, J. B., Savage, M. G. and McAuliffe, B. R., “Wind Tunnel Testing of an Inclined Aeroelastic Cable Model-Pressure and Motion Characteristics, Part I,” EACWE 5 Florence., Italy 19th -23rd, 2009.
[8] Jakobsen, J. B., Andersen, T. L., Macdonald, J. H. G., Nikias, N., Savage, M. G. and McAuliffe, B. R., “Wind Tunnel Testing of an Inclined Aeroelastic Cable Model-Pressure and Motion Characteristics, Part II,” EACWE 5 Florence., Italy 19th -23rd, 2009.
[9] Higuchi, H., Kim, H. J. and Farell, C. F., “On Flow Separation and Reattachment Around a Circular Cylinder at Critical Reynolds Numbers,” J. Fluid Mech., Vol.200, pp. 149-171, 1989.
[10] Von Papen, T., Steffes, H., Ngo, H. D. and Obermeier, E., “A Micro Surface Fence Probe for the Application in Flow Reverse Areas,”Sensors and Actuators A: Physical, Vol,97-98, pp. 264-287, 2002.
[11] Miau, J. J., Chou, J. H., Cheng, C. M., Chu, C. R., Woo, K. C., Ren, S. K., Chen, Z. L., Hu, C. C., and Chen, J. L., “Design Aspects of the ABRI Wind Tunnel,” The International Wind Engineering Symposium., Taipei County, Taiwan, 2003.
[12] Roshko, A. and Fiszdon, W., “On the Persistence of Transition in the Near-Wake,” Problems in Hydrodynamics and Continunm Mechanics, Philadelphia, SIAM., pp. 606-616, 1969.
[13] Dryden, H. L., “The Role of Transition from Laminar to Turbulent Flow in Fluid Mechanics,” University of Pennsylvania Bicentenial Conference., pp. 1-13, 1941.
[14] Zdravkovich, M. M., “Flow Around Circular Cylinders,” Oxford University Press., Vol.1, pp. 1-18, 1997.
[15] Camichel, C. and Escande, E., “Hydrodynamic Similarity and Techniques for Scaled Models,” Publications Scientific et Technique du Ministere de l’air., Vol.127, pp. 249-285, 1938.
[16] Thom, A., “The Flow Past Circular Cylinders at Low Speeds,” Proceedings Royal Society., Vol.141, pp. 651-669, 1933.
[17] Homann, F., “Influence of Higher Viscosity on Flow Around Cylinder,” Forschung aus dem Gebiete des Ingenieurwesen., Vol.17, pp. 1-10, 1936.
[18] Zdravkovich, M. M., “Smoke Observation for Wakes of Tandem Cylinders at Low Reynolds Numbers,” The Aeronautical Journal., Vol.76, pp. 108-117, 1972.
[19] Gerrard, J. H., “The Wakes of Cylindrical Bluff Bodies at Low Reynolds Number,” Philosophical Transactions., Vol.228, pp. 351-382, 1978.
[20] Wieselsberger, C., “New Data on the Law of Hydro and Aerodynamics Resistance,” Physikalische Zeitschrift., Vol.22, pp. 321-328, 1921.
[21] Tani, I., “Low Speed Flows Involving Bubble Separations,” Progress in Aerospace Science., Vol.5, pp. 70-90, 1964.
[22] Bearman, P. W., “On Vortex Shedding from a Circular Cylinder in the Critical Reynolds Number Region,” J Fluid Mech., Vol.37, pp. 577-587, 1969.
[23] Achenbach, E. and Heinecke, E., “On Vortex Shedding from Smooth and Rough Cylinders in the Range 6k<Re<5M,” J. Fluid Mech., Vol.109, pp. 239-251, 1981.
[24] Farell, C. and Blessmann, J., “On Critical Flow Around Smooth Circular Cylinders,” J. Fluid Mech., Vol.136, pp. 375-391, 1983.
[25] Schewe, G., “On the Force Acting on a Circular Cylinder in Cross Flow from Subcritical up to Transcritical Reynolds Numbers,” J. Fluid Mech., Vol.133, pp. 265-285, 1983.
[26] Adachi, T., Matsuuchi, K., Matsuda, S. and Kawai, T., “On the Force and Vortex Shedding on a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers,” Bulletin JSME., Vol.28, pp. 1906-1909, 1985.
[27] Güven, O., Farell, C. and Patel, V. C., “Surface Roughness Effects on the Mean Flow Past Circular Cylinders,” J. Fluid Mech., Vol.98, pp. 673-701, 1980.
[28] Prandtl, L., “Collected Work in German,” Springer, Berlin., 1961.
[29] Eisner, F., “Pressure Measurements on Cylinder Surrounded by Flowing Fluid,” Zeitschrift für angewandte Mathematik und Mechanik., Vol.5, pp. 486-489, 1925.
[30] Kamiya, N., Suzuki, S. and Nishi, T., “On the Aerodynamics Force Acting on a Circular Cylinder in the Critical Range of the Reynolds Number,” AIAA meeting ., pp. 79-1975, 1979.
[31] Almonsnino, D. and McAlister, K. W., “Water Tunnel Study of Transition Flow Around Circular Cylinders,” National Aeronautics and Space Administration, NASA 85879., 1984.
[32] Cincotta, T. T., Jones, G. W. and Walker, W. W., “Experimental Investigation of Wind Induced Oscillation Effects on Cylinders in Two Dimensional Flow at High Reynolds Numbers,” National Aeronautics and Space Administration, NASA TMX 57779., pp. 20.1-20.35, 1966.
[33] Fage, A. and Falkner, V. M., “Further Experiments on the Flow Around Circular Cylinder,” Aeronautical Research Council, Rep. & Memo. 1369, 1931.
[34] Achenbach, E., “Distribution of Local Pressure and Skin Friction Around a Circular Cylinder in Cross-Flow up to Re=5×106,” J. Fluid Mech., Vol.34, pp. 652-639, 1968.
[35] West, G. S. and Apelt, C. J., “Measurements of Fluctuating Pressures and Forces on a Circular Cylinder in the Reynolds Number Range 104 to 2.5×105,” Journal of Fluids and Structures, Vol.7, pp. 227-244, 1993.
[36] Masaru, K., Suzuki, K. A. and Hagino, M., “A Contribution to the Free-Stream Turbulence Effect on the Flow Past a Circular Cylinder,” J. Fluid Mech., Vol.115, pp. 151-164, 1982.
[37] Achenbach, E., “Influence of Surface Roughness on the Cross-Flow Around a Circular Cylinder,” J. Fluid Mech., Vol.46, pp. 321-335, 1971.
[38] Fage, A. and Warsap, J. H., “The Effect of Turbulence and Surface Roughness on the Drag of a Circular Cylinder,” Aeronautical Research Council, Rep. & Memo. 1283, 1930.
[39] Nakamura, Y. and Tomonari, Y., “The Effect of Surface Roughness on the Flow Past Circular Cylinders at High Reynolds Numbers,” J. Fluid Mech., Vol.123, pp. 363-378, 1982.
[40] Cantwell, B. J., “Experimental Study of Turbulent Near-wake of a Circular Cylinder at Re = 140,000,” PhD thesis, 1976.
[41] 高義明,“內政部建築研究所環境風洞校驗及二維鈍形體空氣動力流場實驗研究”,成大航太所碩士論文,2005。
[42] 蔡星汶,“圓柱表面流場在臨界區之空氣動力實驗研究”,成大航太所碩士論文,2006。
[43] 杜榮國,“MEMS熱膜感測器之製造及其應用於流場量測之特性”,成大航太所碩士論文,2003。
[44] 柯佩君,“非定常矩形截面凸狀物之三維回覆在接觸現象”,成大航太所碩士論文,2009。
[45] Jørgensen, F. E., “How to Measure Turbulence with Hot-Wire Anemometry-A Practical Guide,”Dantec Dynamics, 2002.
[46] Barlow, J. B., Rae, W. H., and Pope A., “Low Speed Wind Tunnel Testing,” third Edition, John Wiley & Sons, New York, 1999.
[47] Schewe, G., “On the Force Fluctuations Acting on a Circular in Crossflow from Subcritical up to Transcritical Reynolds Numbers,” J. Fluid Mech., Vol. 133, pp. 265-285, 1983.
[48] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen. N. C., Tung, C. C., and Liu, H. H., “The Empirical Mode Decomposition and the Hilbert Spectrum of Nonlinear and Non-Stationary Time Series Analysis,” Proc. R. Soc. Lond., Vol.A454, pp. 903-995, 1998.
[49] Grossmann A. and Morlet J., “Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape,” SIAM J. MATH. ANAL., Vol.15, No.4, pp.723-736, 1984.
[50] 伍湘杰,“渦流溢放中低頻調變與三維性之瞬時特性”,成大航太所博士論文,2003。
[51] 杜榮國,“次臨界區雷諾數下鈍型體非定常三維特性之研究”,成大航太所博士論文,2007。
[52] West, G. S. and Apelt, C. J., “The Effects of Tunnel Blockage and Aspect Ratio on the Mean Flow Past a Circular Cylinder with Reynolds Numbers between 104 and 105,” J. Fluid Mech., Vol.114, pp. 361-377, 1982.
[53] “Mean Forces, Pressures and Flow Field Velocities for Circular Cylindrical Structures: Single Cylinder and Two-Dimensional Flow,”ESDU 80025, 1980.
[54] Zan, S. J., “Experiments on Circular Cylinders in Crossflow at Reynolds Numbers up to 7 millions,” J. Wind Engineering Industrial Aerodynamics, Vol. 96, pp. 880-886,2008.
[55] Fujita, K., Ikegami, Y., Kobayashi, K. and Ohashi, M., “Experimental Studies on fluctuating lift force on a single circular cylinder at high Reynolds numbers,” J. Wing Engineering, Vol. 37, pp. 73-82.
[56] Roshko, A., “Experiments on Flow Past a Cylinder at Very High Reynolds Number,” J. Fluid Mech., Vol. 10, pp.345-356, 1961.
[57] Miau, J. J., Tsai, H. W., Lin, Y. J., Tu, J. K., Fang, C. H. and Chen, M. C., “Experiment on Smooth Circular Cylinders in Cross-flow in the Critical Reynolds Number Regime,” Experiment Fluid DOI 10.1007, 2001.