簡易檢索 / 詳目顯示

研究生: 柯佳穎
Ko, Chia-Ying
論文名稱: 遺傳變異對非生物性逆境下蕓薹屬的重複序列之表現造成的影響
Genetic variation in repetitive element expression responses to abiotic stress in Brassica.
指導教授: 林耀正
Lin, Yao-Cheng
共同指導教授: 張文綺
Chang, Wen-Chi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 125
中文關鍵詞: 轉座子轉座子表現非生物性逆境蕓苔屬逆境反應
外文關鍵詞: Transposable element, TE expression, Abiotic stress, Brassica, Stress response
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蕓苔屬(Brassica)不僅包含許多重要的作物,更是研究基因體演化的理想模型。本 論文的目的是為瞭解蕓苔屬基因體重複序列的演化歷史以及熱逆境調控重複序列表 現的機制。首先,我們開發系統性的轉座子(TE, transposable element)註解系統, 對蕓苔屬 U 三角中的六種植物做了轉座子、核醣體 DNA(rDNA)和中心粒 (centromere)重複序列的註解。我們發現 B. oleracea 基因體在大約 150 萬年前有一 個第一型轉座子超級家族(class-I TE superfamily):Gypsy 大量表現並複製的現 象。我們還在二倍體和四倍體蕓苔屬物種的 C 染色體中發現了大量複製的一個第二 型轉座子超級家族(class-II TE superfamily): CACTA。另外,我們在 C 染色體中 發現了新的 5S rDNA 拷貝,也用 SNP(single nucleotide polymorphism)分析辨識出 了 A 染色體中的兩個 5S 核醣體型。由 45S rDNA 的二級結構分析發現在蕓苔屬的 A、B 和 C 染色體中,ITS1(internal transcribed spacer 1)比 ITS2 具有更高的序列岐 異度。為了找出 B. oleracea 中與逆境相關的轉座子家族(TE family),我們依據序 列相似性進一步將轉座子分類為轉座子家族。我們在 B. oleracea 中鑑定出了具有根 特異性且會被熱誘導的 ONSEN 轉座子表現。這個 ONSEN 家族的熱響應因子 (HRE,heat responsive element)不具功能性,且鄰近區域處都存在兩種保守序 列。此保守序列的功能還需要被進一步研究。 總結來說,本論文對重複序列做註釋 有助於更全面地對重複序列在蕓苔屬進行種間和種內的比較。

    Brassica genus contains many important crops and is an idea model to study genome evolution. Here, we aim to understand the evolutionary history of Brassica genomes and the impacts of repetitive sequences in response to heat stress. We first characterized the profiles of transposable elements (TEs), ribosomal DNAs (rDNAs) and centromeric repeats in six species of Brassica U’s triangle of A, B, C genome karyotypes. We have developed a TE annotation system and systemically analyzed published Brassica genome. In particular, we have identified bursts of Gypsy, a class-I TE superfamily, around 1.5 million years ago in B. oleracea genomes. We have also found high copy number of CACTA, a class-II TE superfamily, in diploid and polyploid species of Brassica C genomes. Novel 5S rDNA copies were identified in C genome, and SNP analysis have characterized two 5S ribotypes in A genome. Secondary structure analysis of 45S rDNA showed more divergence in ITS1 (internal transcribed spacer) than ITS2 across A, B and C genomes. We further classified TEs into families based on the sequence similarity. We identified a class of root-specific heat-induced ONSEN expression in B. oleracea. This ONSEN family in B. oleracea genomes carries two conserved motifs that are proximal to the non-functional heat responsive element (HRE) and the function of the motifs requires further examination. Taken together, this annotation system enables a more comprehensive investigation of repetitive sequence dynamics in an interspecies and intraspecies scale of Brassica genus.

    Abstracts I 中文摘要 II Acknowledgement III Table of contents IV List of tables VI List of figures VII 1. INTRODUCTION 1 1.1 Brassica is a good material for studying genome evolution and morphotype diversification. 1 1.2 Transposable elements 2 1.3 Tandem repeats at centromeres 7 1.4 Ribosomal DNA 7 1.5 Overview in repeat types 10 1.6 The challenge of repetitive element annotation 10 1.7 Motivation 12 2. MATERIALS AND METHODS 13 2.1 Genome materials 13 2.2 Annotation of ribosomal DNA (rDNA) 13 2.2.1 5S rDNA 13 2.2.2 45S rDNA 14 2.3 Annotation of centromeric tandem repeats 15 2.4 Annotation of transposable elements (TE) 15 2.4.1 Performing genome wide TE annotation for the first step 15 2.4.2 The curation of EDTA result of Class I – LTRs 15 2.4.3 The curation and further detection of EDTA result of Class II – TIR – CACTA 16 2.4.4 Class II – Helitron 18 2.4.5 Complete TE 18 2.5 Clustering for TE family classification 19 2.6 Insertion time of LTR 19 2.7 Phylogenetic tree construction 20 2.8 Secondary structure prediction of 45S ITS region 21 2.9 RNA sequencing 21 2.9.1 Plant materials and conditions 21 2.9.2 RNA extraction and library construction 22 2.9.3 RNA-Seq data processing 22 2.9.4 TE expression calling 22 3. RESULT 23 3.1 Annotation of Brassica transposable elements 23 3.1.1 Summary of the published TE annotation 23 3.1.2 Development of TE annotation pipeline and the curation of the complete LTR TE prediction 24 3.1.3 CACTA curation and reannotation 27 3.1.4 Summary of TE annotation in Brassica genomes 29 3.1.5 Comparison of TE family in B. oleracea 30 3.2 Prediction of the centromere repeat 33 3.3 rDNA overview 34 3.3.1 The rDNA annotation result 34 3.3.2 5S IGS ribotypes ABC 36 3.3.3 45S rDNA in ABC 38 3.4 TE expression in B. oleracea genome 40 4. DISCUSSION 43 4.1 The novelty of TE annotation in this study 43 4.2 The quality assessment for genome assemblies 44 4.3 The Gypsy activity and the morphotype diversification in B. oleracea 44 4.4 The regulation of ONSEN expression in B. oleracea remains unclear 46 4.5 Partial and full-length expression pattern of ONSEN 46 4.6 The limitation of this TE annotation 47 4.7 Future perspective 47 5. REFERENCE 100 6. APPENDICES 118

    Alix, K., Joets, J., Ryder, C. D., Moore, J., Barker, G. C., Bailey, J. P., . . . Pat Heslop-Harrison, J. S. (2008). The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J, 56(6), 1030-1044. doi:10.1111/j.1365-313X.2008.03660.x

    Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638

    Azpeitia, E., Tichtinsky, G., Le Masson, M., Serrano-Mislata, A., Lucas, J., Gregis, V., . . . Parcy, F. (2021). Cauliflower fractal forms arise from perturbations of floral gene networks. Science, 373(6551), 192-197. doi:10.1126/science.abg5999

    Baucom, R. S., Estill, J. C., Leebens-Mack, J., & Bennetzen, J. L. (2009). Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res, 19(2), 243-254. doi:10.1101/gr.083360.108

    Bayer, P. E., Scheben, A., Golicz, A. A., Yuan, Y., Faure, S., Lee, H., . . . Edwards, D. (2021). Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnol J. doi:10.1111/pbi.13674

    Beilstein, M. A., Nagalingum, N. S., Clements, M. D., Manchester, S. R., & Mathews, S. (2010). Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci U S A, 107(43), 18724-18728. doi:10.1073/pnas.0909766107

    Belser, C., Istace, B., Denis, E., Dubarry, M., Baurens, F. C., Falentin, C., . . . Aury, J. M. (2018). Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plants, 4(11), 879-887. doi:10.1038/s41477-018-0289-4

    Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170

    Cai, X., Chang, L., Zhang, T., Chen, H., Zhang, L., Lin, R., . . . Wang, X. (2021). Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biol, 22(1), 166. doi:10.1186/s13059-021-02383-2

    Cai, X., Wu, J., Liang, J., Lin, R., Zhang, K., Cheng, F., & Wang, X. (2020). Improved Brassica oleracea JZS assembly reveals significant changing of LTR-RT dynamics in different morphotypes. Theor Appl Genet, 133(11), 3187-3199. doi:10.1007/s00122-020-03664-3

    Capella-Gutierrez, S., Silla-Martinez, J. M., & Gabaldon, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972-1973. doi:10.1093/bioinformatics/btp348

    Carelli, F. N., Cerrato, C., Dong, Y., Appert, A., Dernburg, A., & Ahringer, J. (2022). Widespread transposon co-option in the Caenorhabditis germline regulatory network. Sci Adv, 8(50), eabo4082. doi:10.1126/sciadv.abo4082

    Carr, S. M., & Irish, V. F. (1997). Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta, 201(2), 179-188. doi:10.1007/BF01007702

    Cavrak, V. V., Lettner, N., Jamge, S., Kosarewicz, A., Bayer, L. M., & Mittelsten Scheid, O. (2014). How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genet, 10(1), e1004115. doi:10.1371/journal.pgen.1004115

    Chen, X., Tong, C., Zhang, X., Song, A., Hu, M., Dong, W., . . . Zhang, L. (2021). A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnol J, 19(3), 615-630. doi:10.1111/pbi.13493

    Cheng, F., Liang, J., Cai, C., Cai, X., Wu, J., & Wang, X. (2017). Genome sequencing supports a multi-vertex model for Brassiceae species. Curr Opin Plant Biol, 36, 79-87. doi:10.1016/j.pbi.2017.01.006

    Cheng, F., Sun, C., Wu, J., Schnable, J., Woodhouse, M. R., Liang, J., . . . Wang, X. (2016). Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa. New Phytol, 211(1), 288-299. doi:10.1111/nph.13884

    Cheng, F., Sun, R., Hou, X., Zheng, H., Zhang, F., Zhang, Y., . . . Wang, X. (2016). Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet, 48(10), 1218-1224. doi:10.1038/ng.3634

    Cheng, F., Wu, J., & Wang, X. (2014). Genome triplication drove the diversification of Brassica plants. Hortic Res, 1, 14024. doi:10.1038/hortres.2014.24

    Cheng, F., Liang, J., Cai, C., Cai, X., Wu, J., & Wang, X. (2017). Genome sequencing supports a multi-vertex model for Brassiceae species. Curr Opin Plant Biol, 36, 79-87. doi:10.1016/j.pbi.2017.01.006

    Cosby, R. L., Chang, N. C., & Feschotte, C. (2019). Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev, 33(17-18), 1098-1116. doi:10.1101/gad.327312.119

    Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., . . . Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21. doi:10.1093/bioinformatics/bts635

    Dsouza, M., Larsen, N., & Overbeek, R. (1997). Searching for patterns in genomic data. Trends in Genetics, 13(12), 497-498. doi:10.1016/s0168-9525(97)01347-4

    Edger, P. P., Tang, M., Bird, K. A., Mayfield, D. R., Conant, G., Mummenhoff, K., . . . Pires, J. C. (2014). Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards). PLoS One, 9(7), e101341. doi:10.1371/journal.pone.0101341

    Ellinghaus, D., Kurtz, S., & Willhoeft, U. (2008). LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 9, 18. doi:10.1186/1471-2105-9-18

    Fefelova, E. A., Pleshakova, I. M., Mikhaleva, E. A., Pirogov, S. A., Poltorachenko, V. A., Abramov, Y. A., . . . Klenov, M. S. (2022). Impaired function of rDNA transcription initiation machinery leads to derepression of ribosomal genes with insertions of R2 retrotransposon. Nucleic Acids Res, 50(2), 867-884. doi:10.1093/nar/gkab1276

    Grummt, I. (2003). Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev, 17(14), 1691-1702. doi:10.1101/gad.1098503R

    Guo, N., Wang, S., Gao, L., Liu, Y., Wang, X., Lai, E., . . . Liu, F. (2021). Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biol, 19(1), 93. doi:10.1186/s12915-021-01031-2

    He, Z., Ji, R., Havlickova, L., Wang, L., Li, Y., Lee, H. T., . . . Bancroft, I. (2021). Genome structural evolution in Brassica crops. Nat Plants. doi:10.1038/s41477-021-00928-8

    Hemleben, V., Grierson, D., Borisjuk, N., Volkov, R. A., & Kovarik, A. (2021). Personal Perspectives on Plant Ribosomal RNA Genes Research: From Precursor-rRNA to Molecular Evolution. Front Plant Sci, 12, 797348. doi:10.3389/fpls.2021.797348

    Hsu, C. C., Chen, S. Y., Lai, P. H., Hsiao, Y. Y., Tsai, W. C., Liu, Z. J., . . . Chen, H. H. (2020). Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids. BMC Genomics, 21(1), 807. doi:10.1186/s12864-020-07221-6

    Huang, J., Wang, Y., Liu, W., Shen, X., Fan, Q., Jian, S., & Tang, T. (2017). EARE-1, a Transcriptionally Active Ty1/Copia-Like Retrotransposon Has Colonized the Genome of Excoecaria agallocha through Horizontal Transfer. Front Plant Sci, 8, 45. doi:10.3389/fpls.2017.00045

    Ito, H., Gaubert, H., Bucher, E., Mirouze, M., Vaillant, I., & Paszkowski, J. (2011). An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472(7341), 115-119. doi:10.1038/nature09861

    Kang, L., Qian, L., Zheng, M., Chen, L., Chen, H., Yang, L., . . . Liu, Z. (2021). Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat Genet, 53(9), 1392-1402. doi:10.1038/s41588-021-00922-y

    Kapitonov, V. V., & Jurka, J. (2001). Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A, 98(15), 8714-8719. doi:10.1073/pnas.151269298

    Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 30(4), 772-780. doi:10.1093/molbev/mst010

    Koch, M. A., Haubold, B., & Mitchell-Olds, T. (2000). Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol, 17(10), 1483-1498. doi:10.1093/oxfordjournals.molbev.a026248

    Lee, H., Chawla, H. S., Obermeier, C., Dreyer, F., Abbadi, A., & Snowdon, R. (2020). Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. Front Plant Sci, 11, 496. doi:10.3389/fpls.2020.00496

    Li, P., Su, T., Zhao, X., Wang, W., Zhang, D., Yu, Y., . . . Zhang, F. (2021). Assembly of the non-heading pak choi genome and comparison with the genomes of heading Chinese cabbage and the oilseed yellow sarson. Plant Biotechnol J, 19(5), 966-976. doi:10.1111/pbi.13522

    Li, Y., & Dooner, H. K. (2009). Excision of Helitron transposons in maize. Genetics, 182(1), 399-402. doi:10.1534/genetics.109.101527

    Liang, Z., Anderson, S. N., Noshay, J. M., Crisp, P. A., Enders, T. A., & Springer, N. M. (2021). Genetic and epigenetic variation in transposable element expression responses to abiotic stress in maize. Plant Physiol. doi:10.1093/plphys/kiab073

    Lim, K. B., de Jong, H., Yang, T. J., Park, J. Y., Kwon, S. J., Kim, J. S., . . . Park, B. S. (2005). Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells, 19(3), 436-444.

    Lim, K. Y., Skalicka, K., Koukalova, B., Volkov, R. A., Matyasek, R., Hemleben, V., . . . Kovarik, A. (2004). Dynamic Changes in the Distribution of a Satellite Homologous to Intergenic 26-18S rDNA Spacer in the Evolution of Nicotiana. Genetics, 166(4), 1935-1946. doi:10.1093/genetics/166.4.1935

    Lisch, D. (2013). How important are transposons for plant evolution? Nat Rev Genet, 14(1), 49-61. doi:10.1038/nrg3374

    Liu, B., Iwata-Otsubo, A., Yang, D., Baker, R. L., Liang, C., Jackson, S. A., . . . Zhao, M. (2021). Analysis of CACTA transposase genes unveils the mechanism of intron loss and distinct small RNA silencing pathways underlying divergent evolution of Brassica genomes. Plant J, 105(1), 34-48. doi:10.1111/tpj.15037

    Liu, S., de Jonge, J., Trejo-Arellano, M. S., Santos-Gonzalez, J., Kohler, C., & Hennig, L. (2021). Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. New Phytol, 229(4), 2238-2250. doi:10.1111/nph.17018

    Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I. A., . . . Paterson, A. H. (2014). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 5, 3930. doi:10.1038/ncomms4930

    Liu, Z., Fan, M., Yue, E. K., Li, Y., Tao, R. F., Xu, H. M., . . . Xu, J. H. (2020). Natural variation and evolutionary dynamics of transposable elements in Brassica oleracea based on next-generation sequencing data. Hortic Res, 7, 145. doi:10.1038/s41438-020-00367-0

    Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I. A., . . . Paterson, A. H. (2014). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 5, 3930. doi:10.1038/ncomms4930

    Lorenz, R., Bernhart, S. H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms Mol Biol, 6, 26. doi:10.1186/1748-7188-6-26

    Lv, H., Wang, Y., Han, F., Ji, J., Fang, Z., Zhuang, M., . . . Yang, L. (2020). A high-quality reference genome for cabbage obtained with SMRT reveals novel genomic features and evolutionary characteristics. Sci Rep, 10(1), 12394. doi:10.1038/s41598-020-69389-x

    Lysak, M. A., Koch, M. A., Pecinka, A., & Schubert, I. (2005). Chromosome triplication found across the tribe Brassiceae. Genome Res, 15(4), 516-525. doi:10.1101/gr.3531105

    Mabry, M. E., Turner-Hissong, S. D., Gallagher, E. Y., McAlvay, A. C., An, H., Edger, P. P., . . . Pires, J. C. (2021). The Evolutionary History of Wild, Domesticated, and Feral Brassica oleracea (Brassicaceae). Mol Biol Evol, 38(10), 4419-4434. doi:10.1093/molbev/msab183

    Macas, J., Meszaros, T., & Nouzova, M. (2002). PlantSat: a specialized database for plant satellite repeats. Bioinformatics, 18(1), 28-35. doi:10.1093/bioinformatics/18.1.28

    Munoz-Lopez, M., & Garcia-Perez, J. L. (2010). DNA transposons: nature and applications in genomics. Curr Genomics, 11(2), 115-128. doi:10.2174/138920210790886871

    Nagaharu, U. (1935). Genome Analysis in Brassica with Special Reference to the Experimental Formation of B. napus and Peculiar Mode of Fertilization. Japanese Journal of Botany, 7, 389-452.

    Nozawa, K., Chen, J., Jiang, J., Leichter, S. M., Yamada, M., Suzuki, T., . . . Zhong, X. (2021). DNA methyltransferase CHROMOMETHYLASE3 prevents ONSEN transposon silencing under heat stress. PLoS genetics, 17(8). doi:10.1371/journal.pgen.1009710.r006

    Ou, S., Chen, J., & Jiang, N. (2018). Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res, 46(21), e126. doi:10.1093/nar/gky730

    Ou, S., & Jiang, N. (2018). LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol, 176(2), 1410-1422. doi:10.1104/pp.17.01310

    Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J. R. A., Hellinga, A. J., . . . Hufford, M. B. (2019). Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol, 20(1), 275. doi:10.1186/s13059-019-1905-y

    Parkin, I. A., Koh, C., Tang, H., Robinson, S. J., Kagale, S., Clarke, W. E., . . . Sharpe, A. G. (2014). Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol, 15(6), R77. doi:10.1186/gb-2014-15-6-r77

    Paritosh, K., Pradhan, A. K., & Pental, D. (2020). A highly contiguous genome assembly of Brassica nigra (BB) and revised nomenclature for the pseudochromosomes. BMC Genomics, 21(1), 887. doi:10.1186/s12864-020-07271-w

    Paritosh, K., Yadava, S. K., Singh, P., Bhayana, L., Mukhopadhyay, A., Gupta, V., . . . Pental, D. (2021). A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnol J, 19(3), 602-614. doi:10.1111/pbi.13492

    Perumal, S., James, B., Tang, L., Kagale, S., Robinson, S. J., Yang, T. J., & Parkin, I. A. P. (2020). Characterization of B-Genome Specific High Copy hAT MITE Families in Brassica nigra Genome. Front Plant Sci, 11, 1104. doi:10.3389/fpls.2020.01104

    Perumal, S., Waminal, N. E., Lee, J., Lee, J., Choi, B. S., Kim, H. H., . . . Yang, T. J. (2017). Elucidating the major hidden genomic components of the A, C, and AC genomes and their influence on Brassica evolution. Sci Rep, 7(1), 17986. doi:10.1038/s41598-017-18048-9

    Pietzenuk, B., Markus, C., Gaubert, H., Bagwan, N., Merotto, A., Bucher, E., & Pecinka, A. (2016). Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol, 17(1), 209. doi:10.1186/s13059-016-1072-3

    Quiros, C. F., & Farnham, M. W. (2011). The genetics of Brassica oleracea. . Genetics and Genomics of the Brassicaceae, 261-289. doi:https://doi.org/10.1007/978-1-4419-7118-0_9

    Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616

    Raska, I., Koberna, K., Malinsky, J., Fidlerova, H., & Masata, M. (2004). The nucleolus and transcription of ribosomal genes. Biol Cell, 96(8), 579-594. doi:10.1016/j.biolcel.2004.04.015

    Roquis, D., Robertson, M., Yu, L., Thieme, M., Julkowska, M., & Bucher, E. (2021). Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 49(18), 10431-10447. doi:10.1093/nar/gkab828

    Rousseau-Gueutin, M., Belser, C., Da Silva, C., Richard, G., Istace, B., Cruaud, C., . . . Aury, J. M. (2020). Long-read assembly of the Brassica napus reference genome Darmor-bzh. Gigascience, 9(12). doi:10.1093/gigascience/giaa137

    Saez-Vasquez, J., Caparros-Ruiz, D., Barneche, F., & Echeverria, M. (2004). A plant snoRNP complex containing snoRNAs, fibrillarin, and nucleolin-like proteins is competent for both rRNA gene binding and pre-rRNA processing in vitro. Mol Cell Biol, 24(16), 7284-7297. doi:10.1128/MCB.24.16.7284-7297.2004

    Saha, P. S., Sengupta, M., & Jha, S. (2017). Ribosomal DNA ITS1, 5.8S and ITS2 secondary structure, nuclear DNA content and phytochemical analyses reveal distinctive characteristics of four subclades of Protasparagus. Journal of Systematics and Evolution, 55(1), 54-70. doi:10.1111/jse.12221

    Schranz, M. E., & Mitchell-Olds, T. (2006). Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell, 18(5), 1152-1165. doi:10.1105/tpc.106.041111

    Sharma, A., Wolfgruber, T. K., & Presting, G. G. (2013). Tandem repeats derived from centromeric retrotransposons. BMC Genomics, 14, 142. doi:10.1186/1471-2164-14-142

    Song, X., Wei, Y., Xiao, D., Gong, K., Sun, P., Ren, Y., . . . Yang, J. (2021). Brassica carinata genome characterization clarifies U's triangle model of evolution and polyploidy in Brassica. Plant Physiol. doi:10.1093/plphys/kiab048

    Steinbiss, S., Willhoeft, U., Gremme, G., & Kurtz, S. (2009). Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res, 37(21), 7002-7013. doi:10.1093/nar/gkp759

    Storer, J., Hubley, R., Rosen, J., Wheeler, T. J., & Smit, A. F. (2021). The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA, 12(1), 2. doi:10.1186/s13100-020-00230-y

    Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol, 38(7), 3022-3027. doi:10.1093/molbev/msab120

    Tan, S., Ma, H., Wang, J., Wang, M., Wang, M., Yin, H., . . . Zhang, Y. E. (2021). DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans. Nat Commun, 12(1), 4280. doi:10.1038/s41467-021-24585-9

    Thomas, J., & Pritham, E. J. (2015). Helitrons, the Eukaryotic Rolling-circle Transposable Elements. Microbiol Spectr, 3(4). doi:10.1128/microbiolspec.MDNA3-0049-2014

    Tynkevich, Y. O., Shelyfist, A. Y., Kozub, L. V., Hemleben, V., Panchuk, II, & Volkov, R. A. (2022). 5S Ribosomal DNA of Genus Solanum: Molecular Organization, Evolution, and Taxonomy. Front Plant Sci, 13, 852406. doi:10.3389/fpls.2022.852406

    Vandepoele, K., Saeys, Y., Simillion, C., Raes, J., & Van De Peer, Y. (2002). The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice. Genome Res, 12(11), 1792-1801. doi:10.1101/gr.400202

    Vasconcelos, S., Nunes, G. L., Dias, M. C., Lorena, J., Oliveira, R. R. M., Lima, T. G. L., . . . Oliveira, G. (2021). Unraveling the plant diversity of the Amazonian canga through DNA barcoding. Ecol Evol, 11(19), 13348-13362. doi:10.1002/ece3.8057

    Waminal, N. E., Perumal, S., Lim, K. B., Park, B. S., Kim, H. H., & Yang, T. J. (2015). Genomic Survey of the Hidden Components of the B. rapa Genome. Brassica Rapa Genome, 83-96. doi:10.1007/978-3-662-47901-8_7

    Wei, L., Xiao, M., An, Z., Ma, B., Mason, A. S., Qian, W., . . . Fu, D. (2013). New insights into nested long terminal repeat retrotransposons in Brassica species. Mol Plant, 6(2), 470-482. doi:10.1093/mp/sss081

    Wells, J. N., & Feschotte, C. (2020). A Field Guide to Eukaryotic Transposable Elements. Annu Rev Genet, 54, 539-561. doi:10.1146/annurev-genet-040620-022145

    Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., . . . Schulman, A. H. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12), 973-982. doi:10.1038/nrg2165

    Xu, Z., & Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res, 35(Web Server issue), W265-268. doi:10.1093/nar/gkm286

    Yang, J., Wang, J., Li, Z., Li, X., He, Z., Zhang, L., . . . Zhang, M. (2021). Genomic signatures of vegetable and oilseed allopolyploid Brassica juncea and genetic loci controlling the accumulation of glucosinolates. Plant Biotechnol J, 19(12), 2619-2628. doi:10.1111/pbi.13687

    Yang, K., Robin, A. H., Yi, G. E., Lee, J., Chung, M. Y., Yang, T. J., & Nou, I. S. (2015). Diversity and Inheritance of Intergenic Spacer Sequences of 45S Ribosomal DNA among Accessions of Brassica oleracea L. var. capitata. Int J Mol Sci, 16(12), 28783-28799. doi:10.3390/ijms161226125

    Zhang, L., Cai, X., Wu, J., Liu, M., Grob, S., Cheng, F., . . . Wang, X. (2018). Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res, 5, 50. doi:10.1038/s41438-018-0071-9

    Zhang, S. J., Liu, L., Yang, R., & Wang, X. (2020). Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae. Genomics Proteomics Bioinformatics, 18(3), 321-332. doi:10.1016/j.gpb.2018.07.009

    Zhang, W., Tian, W., Gao, Z., Wang, G., & Zhao, H. (2020). Phylogenetic Utility of rRNA ITS2 Sequence-Structure under Functional Constraint. Int J Mol Sci, 21(17). doi:10.3390/ijms21176395

    Zhao, M., Du, J., Lin, F., Tong, C., Yu, J., Huang, S., . . . Ma, J. (2013). Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. Plant J, 76(2), 211-222. doi:10.1111/tpj.12291

    無法下載圖示 校內:2025-12-25公開
    校外:2025-12-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE