研究生: |
陳儀華 Chen, Yi-Hua |
---|---|
論文名稱: |
運用多尺度分子模擬探討鋰離子電池膠態電解質的成分對其結構、機械、與離子傳輸特性之影響 Component Effects on the Structural, Mechanical, and Ion Transport Properties of Gel Polymer Electrolyte for Lithium Ion Batteries: A Multiscale Molecular Simulation Study |
指導教授: |
邱繼正
Chiu, Chi-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 鋰電池 、膠態電解質 、聚乙二醇 、多尺度分子模擬 |
外文關鍵詞: | Lithium-ion battery, gel polymer electrolyte, polyethylene oxide, multi-scale simulations |
相關次數: | 點閱:91 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰電池因其輕重量及高能量密度而被廣泛應用於儲能設備中。膠態電解質(GPE)組成的鋰電池在抗燃性以及機械性質方面優於液態電解質,並表現出良好的導離度。最近研究指出聚丙烯腈-丙烯酸甲酯共聚物(PAN-co-MA)和聚乙二醇(PEO)摻入液態電解質後製備現址成膠的膠態電解質表現優良;而鋰鹽成分和PEO的量會影響成膠速度與機械特性。在此我們結合全原子分子模擬(AA-MD)和耗散粒子動力學模擬(DPD)探討此類型膠態電解質的成膠機制,以及各組成對其結構、機械、和離子傳遞特性之影響。AA-MD結果顯示,液態電解質中陰離子會與溶劑競爭吸引Li+,影響Li+的配位環境。其中,TFSI-對Li+的作用力雖然較{mathrm{ClO}}_mathrm{4}^mathrm{-}弱,但所形成的配位結構最穩定,且滯留時間最長,其特性增加了機械強度。而GPE系統中,PEO因其鏈段較具彈性,可包覆鋰離子形成穩定配位結構,進而增加鋰鹽解離度;而不同的鋰鹽則會影響PEO與鋰離子的配位結構,進而影響成膠過程。在DPD模擬中,為建構合理的GPE模型,經評估三種計算弗洛里-哈金斯(Flory-Huggins)理論作用參數的方法後,本研究採用無限稀釋活性係數法(IDAC)計算各成分之間的作用力,並運用莫氏勢能(Morse potential)來描述鋰離子的躍遷傳遞行為,以及鋰離子的配位結構。DPD模擬結果顯示,足量的PEO會誘發高分子形成網狀結構,進而增加GPE的機械強度,而PEO末端氫氧基所形成的氫鍵,對於成膠交聯過程也有重要的影響。而提升PEO含量,會使網狀結構有寬敞的傳遞通道,增加溶劑流動與離子傳遞。然而過多的PEO會增加Li+與高分子的配位,進而降低Li+的移動性,故Li+並非與通道尺寸完全正相關。綜合分析顯示,在4% - 8%的PEO含量下,鋰離子在GPE的傳導介質和孔洞性質的影響下,有最佳的傳遞特性。本研究運用多尺度模擬探討現址成膠型GPE的成膠機制跟鋰離子傳遞機制,其結果可為往後新穎的膠態電解質設計提供重要的參考依據。
Lithium-ion batteries (LIBs) are one of the most widely applied energy storage devices for their lightweights and high energy density. In LIBs, gel polymer electrolyte (GPE) has the advantages over conventional liquid electrolyte (LE) with improved combustion retardation and mechanical properties while maintaining high ionic conductivity. A recent study showed that a novel on-site coagulated GPE fabricated via mixing poly (acrylonitrile-co-methyl acrylate) (PAN-co-MA) and polyethylene oxide (PEO) within LE displayed excellent LIB performance. In this type of GPE, the lithium salts and the amount of PEO greatly affect the gelation time. Here, we applied all-atom molecular dynamics (AA-MD) combined with dissipative particle dynamics (DPD) to examine the gelation mechanisms of GPE, and the effects of lithium salts and polymer composition on the structural, mechanical, and ionic transport properties of GPE. The AA-MD results showed that anions compete with solvent to interact with Li+, affecting the coordination environment of Li+ within LE. Particularly, {mathrm{TFSI}}^mathrm{-} can form the most stable coordination complex with Li+ with the long residence time despite of its weaker Li+ attraction compared with {mathrm{ClO}}_mathrm{4}^mathrm{-}, leading to an increased mechanical strength. Within GPE, PEO can bend and wrap around Li+ to form stable coordination complexes, resulting in increased lithium salts dissociation; variation of lithium salts affects the Li+-PEO coordination and thus the gelation process. For DPD simulation, after comparing three different methods to evaluate the Flory-Higgins parameters among GPE components, we utilized infinite dilution activity coefficient (IDAC) to calculate the DPD repulsive parameters. Additionally, morse potentials were introduced in DPD model to describe the Li+ hopping transport and Li+ coordination. The DPD results demonstrate that sufficient PEO induces the polymer network morphology and increases the mechanical strength of GPE. Terminal attraction by PEO terminal hydroxy groups also plays important roles on cross-linking during the gelation process. Increasing PEO amounts induces the formations of more spacious channel among GPE network, increasing solvent mobility and ion transport. Yet, high amount of PEO also increases the coordination between Li+ and polymers, reducing the Li+ mobility. Hence, Li+ mobility is not always correlated with the network channel size. Combined analyses show that, with 4% - 8%PEO, Li+ exhibit the best ionic transport properties under the effects of conductive medium and structural porosity. The gelation and Li+ transport mechanisms within the on-site coagulated GPE unveiled by multi-scale simulation provide important insights into the future designs and production of novel GPE.
1. ScrosatiB. History of lithium batteries. Journal of Solid State Electrochemistry. 2011;15(7-8):1623-1630. doi:10.1007/s10008-011-1386-8
2. TarasconJM, ArmandM. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359-367. doi:10.1038/35104644
3. BeckF, RüetschiP. Rechargeable batteries with aqueous electrolytes. Electrochimica Acta. 2000;45(15-16):2467-2482. doi:10.1016/S0013-4686(00)00344-3
4. KellerM, VarziA, PasseriniS. Hybrid electrolytes for lithium metal batteries. Journal of Power Sources. 2018;392(May):206-225. doi:10.1016/j.jpowsour.2018.04.099
5. MathiasW, EldridgeM, MoserJR, SchneiderAA. The Solid-State Lithium Battery : A New Improved Chemical Pover Source for Implantable. 1971;(5):317-324.
6. GuanP, ZhouL, YuZ, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. Journal of Energy Chemistry. 2020;43:220-235. doi:10.1016/j.jechem.2019.08.022
7. WangQ, JiangL, YuY, SunJ. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy. 2019;55(October 2018):93-114. doi:10.1016/j.nanoen.2018.10.035
8. FujitaT, TodaK. Microdisplacement measurement using a liquid-delay-line oscillator. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 2003;42(9 B):6131-6134. doi:10.1143/jjap.42.6131
9. NittaN, WuF, LeeJT, YushinG. Li-ion battery materials: Present and future. Materials Today. 2015;18(5):252-264. doi:10.1016/j.mattod.2014.10.040
10. HunterJC. Preparation of a new crystal form of manganese dioxide: λ-MnO2. Journal of Solid State Chemistry. 1981;39(2):142-147. doi:10.1016/0022-4596(81)90323-6
11. ThackerayMM, DavidWIF, BrucePG, GoodenoughJB. Lithium insertion into manganese spinels. Materials Research Bulletin. 1983;18(4):461-472. doi:10.1016/0025-5408(83)90138-1
12. TarasconJM, GuyomardD. iLo o. October. 1991;138(10):2864-2868.
13. OhzukuT, BroddRJ. An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources. 2007;174(2):449-456. doi:10.1016/j.jpowsour.2007.06.154
14. MekonnenY. A Review of Cathode and Anode Materials for Lithium-Ion Batteries. 2016;(1541108):2-7.
15. RoyP, SrivastavaSK. Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A. 2015;3(6):2454-2484. doi:10.1039/c4ta04980b
16. LiQ, ChenJ, FanL, KongX, LuY. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy and Environment. 2016;1(1):18-42. doi:10.1016/j.gee.2016.04.006
17. XuK. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews. 2004;104(10):4303-4417. doi:10.1021/cr030203g
18. UeM. Secondary Batteries - Lithium Rechargeable Systems | Electrolytes: Nonaqueous. Encyclopedia of Electrochemical Power Sources. Published online 2009:71-84. doi:10.1016/B978-044452745-5.00207-0
19. HarrisSJ, TimmonsA, PitzWJ. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries. Journal of Power Sources. 2009;193(2):855-858. doi:10.1016/j.jpowsour.2009.04.030
20. DissanayakeM. Conductivity variation of the liquid electrolyte, EC : PC : LiCF3SO3 with salt concentration. Sri Lankan Journal of Physics. 2006;7(0):1. doi:10.4038/sljp.v7i0.202
21. CampionCL, LiW, LuchtBL. Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society. 2005;152(12):A2327. doi:10.1149/1.2083267
22. XuMQ, LiWS, ZuoXX, LiuJS, XuX. Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive. Journal of Power Sources. 2007;174(2):705-710. doi:10.1016/j.jpowsour.2007.06.112
23. LongL, WangS, XiaoM, MengY. Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A. 2016;4(26):10038-10039. doi:10.1039/c6ta02621d
24. ZhangW, ZhuangHL, FanL, GaoL, LuY. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Science Advances. 2018;4(2). doi:10.1126/sciadv.aar4410
25. XueZ, HeD, XieX. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A. 2015;3(38):19218-19253. doi:10.1039/c5ta03471j
26. WangS, ZhangL, LiJ, et al. A nanowire-nanoparticle double composite polymer electrolyte for high performance ambient temperature solid-state lithium batteies. Electrochimica Acta. 2019;320:134560. doi:10.1016/j.electacta.2019.134560
27. SaikiaD, WuHY, PanYC, et al. Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries. Journal of Power Sources. 2011;196(5):2826-2834. doi:10.1016/j.jpowsour.2010.10.096
28. MarzantowiczM, DygasJR, KrokF, et al. Crystalline phases, morphology and conductivity of PEO:LiTFSI electrolytes in the eutectic region. Journal of Power Sources. 2006;159(1 SPEC. ISS.):420-430. doi:10.1016/j.jpowsour.2006.02.044
29. DasS, GhoshA. Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: Effect of TiO2 and ZnO nanoparticles on electrochemical behavior. Journal of Applied Polymer Science. 2020;137(22):23-25. doi:10.1002/app.48757
30. LiZ, SuG, GaoD, WangX, LiX. Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochimica Acta. 2004;49(26):4633-4639. doi:10.1016/j.electacta.2004.05.018
31. LvP, LiY, WuY, et al. Robust Succinonitrile-Based Gel Polymer Electrolyte for Lithium-Ion Batteries Withstanding Mechanical Folding and High Temperature. ACS Applied Materials and Interfaces. 2018;10(30):25384-25392. doi:10.1021/acsami.8b06800
32. ChoYG, HwangC, CheongDS, KimYS, SongHK. Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems. Advanced Materials. 2019;31(20):1-12. doi:10.1002/adma.201804909
33. PaajanenA, VaariJ, VerhoT. Crystallization of cross-linked polyethylene by molecular dynamics simulation. Polymer. 2019;171(January):80-86. doi:10.1016/j.polymer.2019.03.040
34. ZhangSS. A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources. 2007;164(1):351-364. doi:10.1016/j.jpowsour.2006.10.065
35. WangSH, KuoPL, HsiehCTe, TengH. Design of poly(acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries. ACS Applied Materials and Interfaces. 2014;6(21):19360-19370. doi:10.1021/am505448a
36. WangSH, LinYY, TengCY, et al. Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries. ACS Applied Materials and Interfaces. 2016;8(23):14776-14787. doi:10.1021/acsami.6b01753
37. ChenYM, HsuST, TsengYH, et al. Minimization of Ion–Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries. Small. 2018;14(12):1-11. doi:10.1002/smll.201703571
38. HuangX. Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry. 2011;15(4):649-662. doi:10.1007/s10008-010-1264-9
39. GavrilovAA, KudryavtsevYV., ChertovichAV. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations. Journal of Chemical Physics. 2013;139(22). doi:10.1063/1.4837215
40. ShinDW, GuiverMD, LeeYM. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chemical Reviews. 2017;117(6):4759-4805. doi:10.1021/acs.chemrev.6b00586
41. HwangSS, ChoCG, KimH. Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochemistry Communications. 2010;12(7):916-919. doi:10.1016/j.elecom.2010.04.020
42. JiangY, ZhaoH, YueL, et al. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications. 2021;122(October 2020):106881. doi:10.1016/j.elecom.2020.106881
43. ChenG, ZhangF, ZhouZ, LiJ, TangY. A Flexible Dual-Ion Battery Based on PVDF-HFP-Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability. Advanced Energy Materials. 2018;8(25):1-7. doi:10.1002/aenm.201801219
44. LiuW, ZhangXK, WuF, XiangY. A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries. IOP Conference Series: Materials Science and Engineering. 2017;213(1). doi:10.1088/1757-899X/213/1/012036
45. JungHR, LeeWJ. Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochimica Acta. 2011;58(1):674-680. doi:10.1016/j.electacta.2011.10.015
46. HuangW, ZhuZ, WangL, et al. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angewandte Chemie - International Edition. 2013;52(35):9162-9166. doi:10.1002/anie.201302586
47. NgaiKS, RameshS, RameshK, JuanJC. A review of polymer electrolytes: fundamental, approaches and applications. Ionics. 2016;22(8):1259-1279. doi:10.1007/s11581-016-1756-4
48. HuangB, WangZ, LiG, et al. Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics. 1996;85(1-4):79-84. doi:10.1016/0167-2738(96)00044-6
49. SinghK, OhlanA, SainiP, DhawanSK. composite – super paramagnetic behavior and variable range hopping 1D conduction mechanism – synthesis and characterization. Polymers for Advanced Technologies. 2008;(November 2007):229-236. doi:10.1002/pat
50. RedaelliF, SorbonaM, RossiF. Synthesis and Processing of Hydrogels for Medical Applications. Elsevier Ltd; 2017. doi:10.1016/B978-0-08-100262-9.00010-0
51. PekcanÖ, KaraS. Gelation mechanisms. Modern Physics Letters B. 2012;26(27):1-27. doi:10.1142/S0217984912300190
52. ParadaGA, ZhaoX. Ideal reversible polymer networks. Soft Matter. 2018;14(25):5186-5196. doi:10.1039/c8sm00646f
53. TsengYH, LinYH, SubramaniR, et al. On-site-coagulation gel polymer electrolytes with a high dielectric constant for lithium-ion batteries. Journal of Power Sources. 2020;480(September):228802. doi:10.1016/j.jpowsour.2020.228802
54. AkashiH, SekaiK, TanakaKI. A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries. Electrochimica Acta. 1998;43(10-11):1193-1197. doi:10.1016/S0013-4686(97)10019-6
55. WangZ, HuangB, XueR, HuangX, ChenL. Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ionics. 1999;121(1):141-156. doi:10.1016/S0167-2738(98)00541-4
56. RaghavanP, ManuelJ, ZhaoX, KimDS, AhnJH, NahC. Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. Journal of Power Sources. 2011;196(16):6742-6749. doi:10.1016/j.jpowsour.2010.10.089
57. AppetecchiGB, CroceF, ScrosatiB. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta. 1995;40(8):991-997. doi:10.1016/0013-4686(94)00345-2
58. WuG, YangHY, ChenHZ, et al. Novel porous polymer electrolyte based on polyacrylonitrile. Materials Chemistry and Physics. 2007;104(2-3):284-287. doi:10.1016/j.matchemphys.2007.03.013
59. AndreevYG, BrucePG. Polymer electrolyte structure and its implications. Electrochimica Acta. 2000;45(8):1417-1423. doi:10.1016/S0013-4686(99)00353-9
60. GudlaH, ZhangC, BrandellD. Effects of Solvent Polarity on Li-ion Diffusion in Polymer Electrolytes: An All-Atom Molecular Dynamics Study with Charge Scaling. Journal of Physical Chemistry B. 2020;124(37):8124-8131. doi:10.1021/acs.jpcb.0c05108
61. WebbMA, JungY, PeskoDM, et al. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Central Science. 2015;1(4):198-205. doi:10.1021/acscentsci.5b00195
62. FongKD, SelfJ, DiederichsenKM, WoodBM, McCloskeyBD, PerssonKA. Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries. ACS Central Science. 2019;5(7):1250-1260. doi:10.1021/acscentsci.9b00406
63. BorodinO, SmithGD. Mechanism of ion transport in amorphous poly(ethylene oxide)/ LiTFSI from molecular dynamics simulations. Macromolecules. 2006;39(4):1620-1629. doi:10.1021/ma052277v
64. KlippensteinV, TripathyM, JungG, SchmidF, van derVegtNFA. Introducing Memory in Coarse-Grained Molecular Simulations. The Journal of Physical Chemistry B. 2021;125(19):4931-4954. doi:10.1021/acs.jpcb.1c01120
65. ChremosA, NikoubashmanA, PanagiotopoulosAZ. Flory-Huggins parameter χ, from binary mixtures of Lennard-Jones particles to block copolymer melts. Journal of Chemical Physics. 2014;140(5). doi:10.1063/1.4863331
66. OkuwakiK, MochizukiY, DoiH, KawadaS, OzawaT, YasuokaK. Theoretical analyses on water cluster structures in polymer electrolyte membrane by using dissipative particle dynamics simulations with fragment molecular orbital based effective parameters. RSC Advances. 2018;8(60):34582-34595. doi:10.1039/C8RA07428C
67. LiC, FuX, ZhongW, LiuJ. Dissipative Particle Dynamics Simulations of a Protein-Directed Self-Assembly of Nanoparticles. ACS Omega. 2019;4(6):10216-10224. doi:10.1021/acsomega.9b01078
68. MalekK, EikerlingM, WangQ, NavessinT, LiuZ. Self-organization in catalyst layers of polymer electrolyte fuel cells. Journal of Physical Chemistry C. 2007;111(36):13627-13634. doi:10.1021/jp072692k
69. GrootRD, WarrenPB. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics. 1997;107(11):4423-4435. doi:10.1063/1.474784
70. EspanolP, WarrenP. Statistical mechanics of dissipative particle dynamics. Epl. 1995;30(4):191-196. doi:10.1209/0295-5075/30/4/001
71. GrootRD, MaddenTJ. Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics. 1998;108(20):8713-8724. doi:10.1063/1.476300
72. MatsenMW, GriffithsGH, WickhamRA, VassilievON. Monte Carlo phase diagram for diblock copolymer melts. Journal of Chemical Physics. 2006;124(2). doi:10.1063/1.2140286
73. LeeMT. Designing Anion Exchange Membranes with Enhanced Hydroxide Ion Conductivity by Mesoscale Simulations. Journal of Physical Chemistry C. 2020;124(8):4470-4482. doi:10.1021/acs.jpcc.9b11566
74. LiX, GaoL, FangW. Dissipative particle dynamics simulations for phospholipid membranes based on a four-to-one coarse-grained mapping scheme. PLoS ONE. 2016;11(5):26-28. doi:10.1371/journal.pone.0154568
75. HoogerbruggePJ, KoelmanJMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Epl. 1992;19(3):155-160. doi:10.1209/0295-5075/19/3/001
76. KumaraswamyG. Thermodynamics of high polymer solutions. Resonance. 2017;22(4):415-426. doi:10.1007/s12045-017-0481-2
77. MaranasJK, MondelloM, GrestGS, KumarSK, DebenedettiPG, GraessleyWW. Liquid structure, thermodynamics, and mixing behavior of saturated hydrocarbon polymers. 1. Cohesive energy density and internal pressure. Macromolecules. 1998;31(20):6991-6997. doi:10.1021/ma9717552
78. MaitiA, McGrotherS. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. Journal of Chemical Physics. 2004;120(3):1594-1601. doi:10.1063/1.1630294
79. WijmansCM, SmitB, GrootRD. Phase behavior of monomeric mixtures and polymer solutions with soft interaction potentials. Journal of Chemical Physics. 2001;114(17):7644-7654. doi:10.1063/1.1362298
80. VishnyakovA, LeeMT, NeimarkAV. Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulations. Journal of Physical Chemistry Letters. 2013;4(5):797-802. doi:10.1021/jz400066k
81. WldomB. Some topics in the theory of fluids. The Journal of Chemical Physics. 1963;39(11):2808-2812. doi:10.1063/1.1734110
82. LeeMT, MaoR, VishnyakovA, NeimarkAV. Parametrization of Chain Molecules in Dissipative Particle Dynamics. Journal of Physical Chemistry B. 2016;120(22):4980-4991. doi:10.1021/acs.jpcb.6b00031
83. LeeM-T, MaoR, VishnyakovA, NeimarkAV. SUPPORTING INFORMATION Parameterization of Chain Molecules in Dissipative Particle Dynamics. 01(3). https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.6b00031/suppl_file/jp6b00031_si_001.pdf
84. LeeMT. Exploring Side-Chain Designs for Enhanced Ion Conductivity of Anion-Exchange Membranes by Mesoscale Simulations. Journal of Physical Chemistry C. 2019;123(17):10802-10815. doi:10.1021/acs.jpcc.9b01815
85. SirkTW, SlizobergYR, BrennanJK, LisalM, AndzelmJW. An enhanced entangled polymer model for dissipative particle dynamics. Journal of Chemical Physics. 2012;136(13):0-11. doi:10.1063/1.3698476
86. IwaokaN, HagitaK, TakanoH. Multipoint segmental repulsive potential for entangled polymer simulations with dissipative particle dynamics. Journal of Chemical Physics. 2018;149(11). doi:10.1063/1.5046755
87. KonowalowDD, HirschfelderJO. Morse potential parameters for O-O, N-N, and N-O interactions. Physics of Fluids. 1961;4(5):637-642. doi:10.1063/1.1706374
88. LeeMT, VishnyakovA, NeimarkAV. Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation. Journal of Chemical Theory and Computation. 2015;11(9):4395-4403. doi:10.1021/acs.jctc.5b00467
89. LeeMT, VishnyakovA, NeimarkAV. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane. Journal of Chemical Physics. 2016;144(1). doi:10.1063/1.4938271
90. KacarG, deWithG. Parametrizing hydrogen bond interactions in dissipative particle dynamics simulations: The case of water, methanol and their binary mixtures. Journal of Molecular Liquids. 2020;302:112581. doi:10.1016/j.molliq.2020.112581
91. BerendsenHJC, van derSpoelD, vanDrunenR. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications. 1995;91(1-3):43-56. doi:10.1016/0010-4655(95)00042-E
92. BlakeHA. Flamingos at home. Nineteenth Century. 1887;22(130):886-890.
93. AlloucheA. Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. Journal of computational chemistry. 2012;32:174-182. doi:10.1002/jcc
94. KlamtA. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. Journal of Physical Chemistry. 1995;99(7):2224-2235. doi:10.1021/j100007a062
95. FrantzDaleB, PlimptonSJ, ShephardMS. Software components for parallel multiscale simulation: An example with LAMMPS. Engineering with Computers. 2010;26(2):205-211. doi:10.1007/s00366-009-0156-z
96. KirkwoodJG, BoggsEM. The radial distribution function in liquids. The Journal of Chemical Physics. 1942;10(6):394-402. doi:10.1063/1.1723737
97. Kroon-BatenburgLMJ, KruiskampPH, VliegenthartJFG, KroonJ. Estimation of the persistence length of polymers by MD simulations on small fragments in solution. Application to cellulose. Journal of Physical Chemistry B. 1997;101(42):8454-8459. doi:10.1021/jp971717k
98. GersteinM, TsaiJ, LevittM. The volume of atoms on the protein surface: Calculated from simulation, using Voronoi polyhedra. Journal of Molecular Biology. 1995;249(5):955-966. doi:10.1006/jmbi.1995.0351
99. SarkisovL, HarrisonA. Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation. 2011;37(15):1248-1257. doi:10.1080/08927022.2011.592832
100. WanH, GaoK, LiS, et al. Chemical Bond Scission and Physical Slippage in the Mullins Effect and Fatigue Behavior of Elastomers. Macromolecules. 2019;52(11):4209-4221. doi:10.1021/acs.macromol.9b00128
101. MondelloM, GrestGS. Viscosity calculations of n-alkanes by equilibrium molecular dynamics. Journal of Chemical Physics. 1997;106(22):9327-9336. doi:10.1063/1.474002
102. QianH, SheetzMP, ElsonEL. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal. 1991;60(4):910-921. doi:10.1016/S0006-3495(91)82125-7
103. RowleyRL, PainterMM. Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations. International Journal of Thermophysics. 1997;18(5):1109-1121. doi:10.1007/BF02575252
104. BussHG, ChanSY, LyndNA, McCloskeyBD. Nonaqueous Polyelectrolyte Solutions as Liquid Electrolytes with High Lithium Ion Transference Number and Conductivity. ACS Energy Letters. 2017;2(2):481-487. doi:10.1021/acsenergylett.6b00724
105. SolanoCJF, JeremiasS, PaillardE, BeljonneD, LazzaroniR. A joint theoretical/experimental study of the structure, dynamics, and Li+ transport in bis([tri]fluoro[methane]sulfonyl)imide [T]FSI-based ionic liquids. Journal of Chemical Physics. 2013;139(3). doi:10.1063/1.4813413
106. DahbiM, GhamoussF, Tran-VanF, LemordantD, AnoutiM. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources. 2011;196(22):9743-9750. doi:10.1016/j.jpowsour.2011.07.071
107. NaejusR, CoudertR, WillmannP, LemordantD. Ion solvation in carbonate-based lithium battery electrolyte solutions. Electrochimica Acta. 1998;43(3-4):275-284. doi:10.1016/S0013-4686(97)00073-X
108. ZhouJ, ZhuR, XuH, TianY. Densities, excess molar volume, isothermal compressibility, and isobaric expansivity of (dimethyl carbonate + n-hexane) systems at temperatures (293.15 to 313.15) K and pressures from 0.1 MPa up to 40 MPa. Journal of Chemical Thermodynamics. 2010;42(12):1429-1434. doi:10.1016/j.jct.2010.06.011
109. KangY, LeeJ, SuhDH, LeeC. A new polysiloxane based cross-linker for solid polymer electrolyte. Journal of Power Sources. 2005;146(1-2):391-396. doi:10.1016/j.jpowsour.2005.03.142