簡易檢索 / 詳目顯示

研究生: 邱俞寧
Chiu, Yu-Ning
論文名稱: 利用 Langmuir-Blodgett 技術製備石墨烯薄膜及其電化學性質的研究
Fabrication of Graphene Thin Films by Langmuir-Blodgett Technique and the studies of their Electrochemical Characteristics
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 146
中文關鍵詞: 石墨烯雙十二碳二甲基溴化銨Langmuir-Blodgett 技術單分子薄膜碳材分散
外文關鍵詞: Graphene dispersion, DDAB, Langmuir-Blodgett technique, monolayer film, carbon material dispersion
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以 Hummer 法製備氧化石墨烯(Graphene Oxide,GO),利用雙
    十二碳二甲基溴化銨(DDAB)與氧化石墨烯之間的作用力,將氧化石墨烯
    固定在氣/液界面,製備GO/DDAB 混和Langmuir 單分子膜。藉由單分子層
    的表面壓-分子佔據面積等溫曲線(π-A isotherm)來探討GO/DDAB 混和單
    分子膜於氣/液介面的行為。之後,利用Langmuir- Blodgett(LB)沉積法將
    單分子膜轉移至固體基板,再以電子顯微鏡和原子力顯微鏡來觀察
    GO/DDAB 混合LB 薄膜的表面形態,並利用紫外光的照射還原含氧官能
    基形成還原之氧化石墨烯(Reduce Graphene Oxide)薄膜,之後進行循環伏
    安測定、電化學阻力分析,探討還原之氧化石墨烯LB 膜之聚集行為對於
    薄膜電化學性質及對過氧化氫感測靈敏度的影響。
    由實驗結果發現,藉由界面活性劑與碳材的比例的調整可以得到分散
    良好的GO 單分子膜,增加石墨烯角面(edge plane)之暴露面積,因而能夠有
    效提升薄膜的電化學性質。由感測結果也發現隨著碳材聚集程度改善,電
    極的感測效能會提升,其靈敏度為0.269μA/cm2.M,電流變化斜率為
    0.15μA/cm2.s。

    In order to improve the dispersibility of graphene, we functionalize the
    graphite with oxidize agent by Hummer’s method .Due to the strong
    hydrophilic property of Graphene Oxide(GO), we add cationic
    surfactant(DDAB) to stabilize Graphene oxide at air/water interface. We study
    the behavior of GO/DDAB mixed monolayer on the air/water interface by
    using the pressure-area (π-A) isotherm. Then we transfer the GO/DDAB mix
    monolayer Langmuir-Blodgett film onto the substrate, and obeserve film
    surface morphology by TEM and AFM. In order to regain the film conductivity,
    we expose the GO/DDAB mix Langmuir-Blodgett film under UV light to form
    Reduce Graphene Oxide(rGO), then we observe the electrochemical property
    of LB film by cyclic Voltammetry , electrochemical impedance sepectroscopy,
    we also fabricate hydrogen peroxide sensor to get the sensor sensibility.
    According to experiment results, by controlling the ratio of GO and
    DDAB, well-dispersed GO thin film is fabricated. The edge plane structure
    will increase while the film dispersibility is improved, which may improve the
    film electrochemical property and sensing result. The sensor exhibits the
    highest current sensitivity (0.269μA/cm2.M) and the lowest the slope of current
    change (0.15μA/cm2.s).

    總目錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅷ 第一章 緒論 1 1-1 前言 1 1-2 研究動機及目的 4 第二章 文獻回顧 6 2-1 Langmuir-Blodgett簡介 6 2-1-1 Langmuir-Blodgett發展歷史 6 2-1-2 Langmuir單分子層特性 6 2-1-3 Langmuir-Blodgett薄膜製備 13 2-2 石墨烯 16 2-2-1 石墨烯的簡介 16 2-2-2石墨烯的結構與電化學性質 17 2-2-3 石墨烯之製備發展 18 2-2-3-1 氧化石墨烯的還原反應 20 2-2-3-2 氧化石墨烯在氣液介面上的行為 25 2-2-3-3 還原之氧化石墨烯電化學性質分析 27 2-2-4 石墨烯的分散性質 30 2-3 生物感測器 38 2-3-1 生物感測器的起源與發展 38 2-3-2 生物感測器原理及結構 39 2-3-3 生物感測器特性與能力 40 2-3-4 葡萄糖生物感測器及其應答機制 42 2-3-5 過氧化氫感測器 44 第三章 實驗部分 47 3-1 實驗藥品與材料 47 3-2 儀器設備 48 3-2-1 Langmuir-Blodgett 沉積裝置 48 3-2-2 表面壓測量原理 49 3-2-3 穿透式電子顯微鏡 50 3-2-4 原子力顯微鏡 52 3-2-5 X光繞射儀 54 3-2-6 傅立葉轉換紅外光光譜儀 55 3-2-7 化學電子能譜分析 57 3-2-8 拉曼圖譜分析 59 3-2-9 循環伏安儀 60 3-2-10 電化學阻抗分析 62 3-2-11 計時安培法 71 3-3 實驗步驟 73 3-3-1 石墨烯/導電性高分子分散溶液製備 73 3-3-2 製備氧化石墨烯(Graphene Oxide,GO) 74 3-3-3 石墨烯/導電性高分子混合單分子層等溫線量測 76 3-3-4 氧化石墨烯單分子層等溫線量測 77 3-3-5 氧化石墨烯/界面活性劑Langmuir-Blodgett混合薄膜製備 77 3-3-6 氧化石墨烯Langmuir-Blodgett薄膜還原 77 3-3-7 電化學分析方法 78 第四章 結果與討論 80 4-1 石墨烯於溶液的分散行為探討 80 4-1-1 添加P3HT對於石墨烯在氣/液介面分散行為的影響之探討 80 4-1-2氧化改質對於石墨烯在氣/液介面分散行為的影響之探討 95 4-2氧化石墨烯於氣/液介面的穩定性之探討 98 4-2-1添加界面活性劑對於氧化石墨烯在氣/液介面的分子行為影響之探討 98 4-2-2氧化石墨烯/DDAB混合單分子在氣/液界面的分子行為 105 4-2-2-1 碳材的量對於GO/DDAB混合單分子層影響之探討 105 4-2-2-2不同LB條件對於GO/DDAB混合單分子層影響之探討 110 4-3石墨烯/DDAB混合薄膜之電性分析 115 4-3-1 UV光照射對氧化石墨烯的還原效應 115 4-3-1-1 X光繞射圖譜分析 115 4-3-1-2傅立葉轉換紅外光光譜分析 117 4-3-1-3化學電子能譜分析 118 4-3-1-4拉曼圖譜分析 120 4-3-1-5還原時間對GO電性影響之探討 122 4-3-2石墨烯濃度對電化學性質及感測結果影響之探討 125 4-3-3石墨烯聚集行為對電化學性質及感測結果影響之探討 131 第五章 結論與建議 137 第六章 參考文獻 140

    [1] Sungjin Park1, Rodney S. Ruoff, “Chemical methods for the production of
    graphenes,” Nature Nanotechnology, 4, 217 - 224 (2009).
    [2] “Insoluble Monolayers at Liquid-Gas Interface,” Wiley Press, pp.
    Chapter 6, (1966).
    [3] G. L. Gaines, “On the history of Langmuir-Blodgett films,” Thin Solid
    Films, 99, R9 (1983).
    [4] D. Myers, “Surface, Interfaces, and Colloids: Priciples and Applications,”
    VCH (1999).
    [5] G. Roberts, “Langmuir-Blodgett Films,” Plenum, (1990).
    [6] R. D. J. Neuman, “Colloid Interface,” Sci., 53, 161 (1975).
    [7] W. S. Ester Xing, Y.Guo, D.Lu, T.S.Xi, “Mechanism of Iron Inhibition by
    stearic-acid Langmuir-Blodgett Monolayers
    Wettability,Surface-Morphology,and Stability of Long-Chain,” Corrosion, 51,
    45 (1995).
    [8] M. Leonard, R. M. Morelis, P. R. Coulet., “Linked influence of pH and
    cations on fatty-acid monolayer integrity related to high-quality
    Langmuir-Blodgett films,” Thin Solid Films, 260, 227 (1995).
    [9] Angelova, A. Penacorada, F. Stiller, B. Zetzsche, T. Ionov, R. Kamusewitz,
    H. Brehmer, L., “Surface Morphology, and Stability of Long-Chain Ester
    Multilayers Obtained by Different Langmuir-Blodgett Deposition Types, ”
    The Journal of Physical Chemistry, 98, 6790 (1994).
    [10] Novoselov, “Electric field effect in atomically thin carbon films,”
    Science, 306, 666-669 (2004).
    [11] H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang, “Graphene oxide doped
    polyaniline for supercapacitors,” Electrochem. Commun., 11, 1158 (2009).
    [12] W. Lv, D.-M. Tang, Y.-B. He, C.-H. You, Z.-Q. Shi, X.-C. Chen, C.-M.
    Chen, P.X. Hou, C. Liu, Q.-H. Yang , “Low-Temperature Exfoliated
    Graphenes :
    Vacuum-Promoted Exfoliation and Electrochemical Energy Storage,” ACS
    Nano, 3, 3730 (2009).
    [13] Hong Wu, JunWang, Xinhuang Kang, ChongminWang, DonghaiWang,
    Jun Liu, Ilhan A. Aksay, Yuehe Lin, “Glucose biosensor based on
    immobilization of glucose oxidase in platinum
    nanoparticles/graphene/chitosan nanocomposite film,” Talanta, 80, p.403-6
    (2009).
    [14] Richard L. McCreery, “Advanced Carbon Electrode Materials for
    Molecular Electrochemistry,” Chem. Rev., 108, 2646–2687 (2008).
    [15] Dale A. C. Brownson, Dimitrios K. Kampouris and Craig E. Banks,
    “Graphene electrochemistry: fundamental concepts through to prominent
    applications,” Chem. Soc. Rev., 41, 6944–6976 (2012).
    [16] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown,
    Ce´cile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov,
    Edward H. Conrad, Phillip N. First, Walt A. de Heer, “Electronic confinement
    and coherence in patterned epitaxial grapheme,” Science, 312, 1191 (2006).
    [17] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah,
    Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel
    Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “Large-area
    synthesis of high-quality and uniform graphene films on Copper foils,”Science, 324, 1312 (2009).
    [18] Hummers, W. S., Offeman, R. E., “Preparation of Graphitic Oxide,” J.
    Am. Chem. Soc., 80, 1339 (1958).
    [19] Hontoria-Lucas, C., Lopez-Peinado, A. J., Lopez-Gonzalez, J. de D.,
    Rojas-Cervantes, M. L. and Martin-Aranda, R. M., “Study of
    oxygen-containing groups in a series of graphite oxides: physical and
    chemical characterization” Carbon, 33,1585-1592 (1995).
    [20] Yanyu Liang, Dongqing Wu, Xinliang Feng and Klaus Müllen,
    “Dispersion of graphene sheets in organic solvent supported by ionic
    interaction,” Adv. Mater., 21, 1679-1683 (2009).
    [21] Chao Zhang, Weng Weei Tjiu, Wei Fan, Shu Huang and Tianxi Liu, “A
    novel approach for transferring water-dispersible grapheme nanosheets into
    organic media,” J. Am. Chem. Soc., 22, 11748-11754 (2012).
    [22] Qingbin Zheng, Wai Hing Ip, Xiuyi Lin, Nariman Yousefi, Kan Kan
    Yeung, Zhigang Li, and Jang-Kyo Kim, “Transparent conductive films
    consisting of ultralarge grapheme sheets produced by Langmuir-Blodgett
    assembly,” J. Am. Chem. Soc., 5, 6039-6051 (2011).
    [23] Youwei Zhang, Hui-Ling Ma, Qilu Zhang, Jing Peng, Jiuqiang Li,
    Maolin Zhai and Zhong-Zhen Yu, “Facile synthesis of well-dispersed
    graphene by γ-ray induced reduction of graphene oxide,” J. Mater. Chem., 22,
    13064-13069 (2012).
    [24] Kai Wang, Tao Feng, Min Qian, Hui Ding, Yiwei Chen, Zhuo Sun, “The
    field emission of vacuum filtered graphene films reduced by microwave,”
    Applied Surface Science, 257, 5808–5812 (2011).
    [25] Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha,Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang and Richard B.
    Kaner, “A One-Step, Solvothermal Reduction Method for Producing Reduced
    Graphene Oxide Dispersions in Organic Solvents,” ACS Nano, 4(7),
    3845–3852 (2010).
    [26] Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner, Kevin A.
    Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen
    and Rodney S. Ruoff, “Synthesis of graphene-based nanosheets via chemical
    reduction of exfoliated graphite oxide,” Carbon, 45, 1558–1565 (2007).
    [27] 陳俊維,李紹先, “石墨烯氧化物的可調變螢光光譜之研究” 自然科
    學簡訊第二十四卷第四期 (2012).
    [28] Laura J. Cote, Franklin Kim and Jiaxing Huang, “Langmuir-Blodgett
    Assembly of Graphite Oxide Single Layers,” J. Am. Chem. Soc., 131,
    1043–1049 (2009).
    [29] Laura J. Cote, Jaemyung Kim, Vincent C. Tung, Jiayan Luo, Franklin
    Kim and Jiaxing Huang, “Graphene oxide as surfactant sheets,” Pure Appl.
    Chem., 83(1), pp. 95–110 (2011).
    [30] Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha,
    Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang and Richard B.
    Kaner, “Highly-efficient fabrication of nanoscolls from functionalized
    graphene oxide by Langmuir-Blodgett method,” Carbon, 48, 4475-4482
    (2010).
    [31] E. Casero, A.M. Parra-Alfambra, M.D. Petit-Domínguez, F. Pariente, E.
    Lorenzo, C. Alonso, “Differentiation between graphene oxide and reduced
    graphene by electrochemical impedance spectroscopy (EIS),”Electrochemistry Communications, 20, 63–66 (2012).
    [32] Vasilios Georgakilas, Athanasios B. Bourlinos, Radek Zboril, Theodore
    A. Steriotis, Panagiotis Dallas, Athanasios K. Stuboscd and Christos Trapalisa,
    “Organic functionalisation of graphenes,” C. Chem. Commun., 46, 1766
    (2010).
    [33] Sajini Vadukumpully, Jhinuk Gupta, Yongping Zhang, Guo Qin Xu and
    Suresh Valiyaveettil, “Functionalization of surfactant wrapped graphene
    nanosheets with alkylazides for enhanced dispersibility,” Nanoscale, 3, 303
    (2011).
    [34] Xing Zhong, Jun Jin, Shuwen Li, Zhiyong Niu, Wuquan Hu, Rong Li
    and Jiantai Ma, “Aryne cycloaddition: highly efficient chemical modification
    of graphene,” J. Chem.Commun., 46, 7340 (2010).
    [35] Daniela C. Marcano , Dmitry V. Kosynkin , Jacob M. Berlin, Alexander
    Sinitskii, Zhengzong Sun,Alexander Slesarev, Lawrence B. Alemany, Wei Lu
    and James M. Tour, “Improved Synthesis of Graphene Oxide,” ACS Nano,
    4(8), (2010).
    [36] Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams,
    Mark A. Hamon and Robert C. Haddon, “Solution Properties of Graphite and
    Graphene,” J. Am. Chem. Soc., 128, 7720-7721 (2006).
    [37] Kiyoung Jo, Taemin Lee, Hyun Jung Choi, Ju Hyun Park, Dong Jun Lee,
    Dong Wook Lee and Byeong-Su Kim, “Stable Aqueous Dispersion of
    Reduced Graphene Nanosheets via Non-Covalent Functionalization with
    Conducting Polymers and Application in Transparent Electrodes,” Langmuir,
    27(5), 2014–2018 (2011).
    [38] 林正立, “溶膠-凝膠修飾電極和電流式乳酸生物感測器” 國立中正大學化學研究所 (2005).
    [39] Yuyan Shao, Jun Wang, Hong Wu, Jun Liu, Ilhan A. Aksay, Yuehe Lina,
    “Graphene Based Electrochemical Sensors and Biosensors: A Review,”
    Electroanalysis, 22(10), 1027 – 1036 (2010).
    [40] M. Zhou, Y. M. Zhai, S. J. Dong, “Electrochemical Sensing and
    Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal.
    Chem., 81, 5603 (2009).
    [41] Changsheng Shan, Huafeng Yang, Dongxue Han, Qixian Zhang, Ari
    Ivaska, and Li Niu, “Water-Soluble Graphene Covalently Functionalized by
    Biocompatible Poly-L-lysine,” Langmuir, 25(20), 12030–12033 (2009).
    [42] S. Belhousse, R. Boukherroub, S. Szunerits, N. Gabouze, A. Keffous, S.
    Sama and A. Benaboura, “Electrochemical grafting of poly(3-hexylthiophene)
    on porous silicon for gas sensing,” Surface and Interface Analysis, 42, 1041
    (2010).
    [43] Virginia Ruiz, Patrick G. Nicholson, Stuart Jollands, Pamela A. Thomas,
    Julie V. Macpherson and Patrick R. Unwin, “Molecular ordering and 2D
    conductivity in ultrathin poly(3-hexylthiophene)/gold nanoparticle composite
    films,” J. Phys. Chem B., 109, 19335 (2005).
    [44] Yasumichi Matsumoto, Michio Koinuma, Su Yeon Kim, Yusuke
    Watanabe, Takaaki Taniguchi, Kazuto Hatakeyama, Hikaru Tateishi and
    Shintaro Ida, “Simple Photoreduction of Graphene Oxide Nanosheet under
    Mild Conditions,” ACS Applied Materials & Interfaces, 2(12), 3461–3466
    (2010).
    [45] Shin-Yi Yang, Kuo-Hsin Chang, Hsi-Wen Tien, Ying-Feng Lee,Shin-Ming Li, Yu-Sheng Wang, Jen-Yu Wang,Chen-Chi M. Ma and
    Chi-Chang Hu, “Design and tailoring of a hierarchical graphene-carbon
    nanotube architecture for supercapacitors,” J. Mater. Chem., 21, 2374 (2011).
    [46] Eun-Young Choi, Tae Hee Han, Jihyun Hong, Ji Eun Kim,a Sun Hwa
    Lee, Hyun Wook Kim and Sang Ouk Kim, “Noncovalent functionalization of
    graphene with end-functional polymers,” J. Mater. Chem., 20, 1907–1912
    (2010).

    下載圖示 校內:2015-08-13公開
    校外:2015-08-13公開
    QR CODE