| 研究生: |
邱俞寧 Chiu, Yu-Ning |
|---|---|
| 論文名稱: |
利用 Langmuir-Blodgett 技術製備石墨烯薄膜及其電化學性質的研究 Fabrication of Graphene Thin Films by Langmuir-Blodgett Technique and the studies of their Electrochemical Characteristics |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 石墨烯 、雙十二碳二甲基溴化銨 、Langmuir-Blodgett 技術 、單分子薄膜 、碳材分散 |
| 外文關鍵詞: | Graphene dispersion, DDAB, Langmuir-Blodgett technique, monolayer film, carbon material dispersion |
| 相關次數: | 點閱:116 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以 Hummer 法製備氧化石墨烯(Graphene Oxide,GO),利用雙
十二碳二甲基溴化銨(DDAB)與氧化石墨烯之間的作用力,將氧化石墨烯
固定在氣/液界面,製備GO/DDAB 混和Langmuir 單分子膜。藉由單分子層
的表面壓-分子佔據面積等溫曲線(π-A isotherm)來探討GO/DDAB 混和單
分子膜於氣/液介面的行為。之後,利用Langmuir- Blodgett(LB)沉積法將
單分子膜轉移至固體基板,再以電子顯微鏡和原子力顯微鏡來觀察
GO/DDAB 混合LB 薄膜的表面形態,並利用紫外光的照射還原含氧官能
基形成還原之氧化石墨烯(Reduce Graphene Oxide)薄膜,之後進行循環伏
安測定、電化學阻力分析,探討還原之氧化石墨烯LB 膜之聚集行為對於
薄膜電化學性質及對過氧化氫感測靈敏度的影響。
由實驗結果發現,藉由界面活性劑與碳材的比例的調整可以得到分散
良好的GO 單分子膜,增加石墨烯角面(edge plane)之暴露面積,因而能夠有
效提升薄膜的電化學性質。由感測結果也發現隨著碳材聚集程度改善,電
極的感測效能會提升,其靈敏度為0.269μA/cm2.M,電流變化斜率為
0.15μA/cm2.s。
In order to improve the dispersibility of graphene, we functionalize the
graphite with oxidize agent by Hummer’s method .Due to the strong
hydrophilic property of Graphene Oxide(GO), we add cationic
surfactant(DDAB) to stabilize Graphene oxide at air/water interface. We study
the behavior of GO/DDAB mixed monolayer on the air/water interface by
using the pressure-area (π-A) isotherm. Then we transfer the GO/DDAB mix
monolayer Langmuir-Blodgett film onto the substrate, and obeserve film
surface morphology by TEM and AFM. In order to regain the film conductivity,
we expose the GO/DDAB mix Langmuir-Blodgett film under UV light to form
Reduce Graphene Oxide(rGO), then we observe the electrochemical property
of LB film by cyclic Voltammetry , electrochemical impedance sepectroscopy,
we also fabricate hydrogen peroxide sensor to get the sensor sensibility.
According to experiment results, by controlling the ratio of GO and
DDAB, well-dispersed GO thin film is fabricated. The edge plane structure
will increase while the film dispersibility is improved, which may improve the
film electrochemical property and sensing result. The sensor exhibits the
highest current sensitivity (0.269μA/cm2.M) and the lowest the slope of current
change (0.15μA/cm2.s).
[1] Sungjin Park1, Rodney S. Ruoff, “Chemical methods for the production of
graphenes,” Nature Nanotechnology, 4, 217 - 224 (2009).
[2] “Insoluble Monolayers at Liquid-Gas Interface,” Wiley Press, pp.
Chapter 6, (1966).
[3] G. L. Gaines, “On the history of Langmuir-Blodgett films,” Thin Solid
Films, 99, R9 (1983).
[4] D. Myers, “Surface, Interfaces, and Colloids: Priciples and Applications,”
VCH (1999).
[5] G. Roberts, “Langmuir-Blodgett Films,” Plenum, (1990).
[6] R. D. J. Neuman, “Colloid Interface,” Sci., 53, 161 (1975).
[7] W. S. Ester Xing, Y.Guo, D.Lu, T.S.Xi, “Mechanism of Iron Inhibition by
stearic-acid Langmuir-Blodgett Monolayers
Wettability,Surface-Morphology,and Stability of Long-Chain,” Corrosion, 51,
45 (1995).
[8] M. Leonard, R. M. Morelis, P. R. Coulet., “Linked influence of pH and
cations on fatty-acid monolayer integrity related to high-quality
Langmuir-Blodgett films,” Thin Solid Films, 260, 227 (1995).
[9] Angelova, A. Penacorada, F. Stiller, B. Zetzsche, T. Ionov, R. Kamusewitz,
H. Brehmer, L., “Surface Morphology, and Stability of Long-Chain Ester
Multilayers Obtained by Different Langmuir-Blodgett Deposition Types, ”
The Journal of Physical Chemistry, 98, 6790 (1994).
[10] Novoselov, “Electric field effect in atomically thin carbon films,”
Science, 306, 666-669 (2004).
[11] H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang, “Graphene oxide doped
polyaniline for supercapacitors,” Electrochem. Commun., 11, 1158 (2009).
[12] W. Lv, D.-M. Tang, Y.-B. He, C.-H. You, Z.-Q. Shi, X.-C. Chen, C.-M.
Chen, P.X. Hou, C. Liu, Q.-H. Yang , “Low-Temperature Exfoliated
Graphenes :
Vacuum-Promoted Exfoliation and Electrochemical Energy Storage,” ACS
Nano, 3, 3730 (2009).
[13] Hong Wu, JunWang, Xinhuang Kang, ChongminWang, DonghaiWang,
Jun Liu, Ilhan A. Aksay, Yuehe Lin, “Glucose biosensor based on
immobilization of glucose oxidase in platinum
nanoparticles/graphene/chitosan nanocomposite film,” Talanta, 80, p.403-6
(2009).
[14] Richard L. McCreery, “Advanced Carbon Electrode Materials for
Molecular Electrochemistry,” Chem. Rev., 108, 2646–2687 (2008).
[15] Dale A. C. Brownson, Dimitrios K. Kampouris and Craig E. Banks,
“Graphene electrochemistry: fundamental concepts through to prominent
applications,” Chem. Soc. Rev., 41, 6944–6976 (2012).
[16] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown,
Ce´cile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov,
Edward H. Conrad, Phillip N. First, Walt A. de Heer, “Electronic confinement
and coherence in patterned epitaxial grapheme,” Science, 312, 1191 (2006).
[17] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah,
Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel
Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “Large-area
synthesis of high-quality and uniform graphene films on Copper foils,”Science, 324, 1312 (2009).
[18] Hummers, W. S., Offeman, R. E., “Preparation of Graphitic Oxide,” J.
Am. Chem. Soc., 80, 1339 (1958).
[19] Hontoria-Lucas, C., Lopez-Peinado, A. J., Lopez-Gonzalez, J. de D.,
Rojas-Cervantes, M. L. and Martin-Aranda, R. M., “Study of
oxygen-containing groups in a series of graphite oxides: physical and
chemical characterization” Carbon, 33,1585-1592 (1995).
[20] Yanyu Liang, Dongqing Wu, Xinliang Feng and Klaus Müllen,
“Dispersion of graphene sheets in organic solvent supported by ionic
interaction,” Adv. Mater., 21, 1679-1683 (2009).
[21] Chao Zhang, Weng Weei Tjiu, Wei Fan, Shu Huang and Tianxi Liu, “A
novel approach for transferring water-dispersible grapheme nanosheets into
organic media,” J. Am. Chem. Soc., 22, 11748-11754 (2012).
[22] Qingbin Zheng, Wai Hing Ip, Xiuyi Lin, Nariman Yousefi, Kan Kan
Yeung, Zhigang Li, and Jang-Kyo Kim, “Transparent conductive films
consisting of ultralarge grapheme sheets produced by Langmuir-Blodgett
assembly,” J. Am. Chem. Soc., 5, 6039-6051 (2011).
[23] Youwei Zhang, Hui-Ling Ma, Qilu Zhang, Jing Peng, Jiuqiang Li,
Maolin Zhai and Zhong-Zhen Yu, “Facile synthesis of well-dispersed
graphene by γ-ray induced reduction of graphene oxide,” J. Mater. Chem., 22,
13064-13069 (2012).
[24] Kai Wang, Tao Feng, Min Qian, Hui Ding, Yiwei Chen, Zhuo Sun, “The
field emission of vacuum filtered graphene films reduced by microwave,”
Applied Surface Science, 257, 5808–5812 (2011).
[25] Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha,Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang and Richard B.
Kaner, “A One-Step, Solvothermal Reduction Method for Producing Reduced
Graphene Oxide Dispersions in Organic Solvents,” ACS Nano, 4(7),
3845–3852 (2010).
[26] Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner, Kevin A.
Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen
and Rodney S. Ruoff, “Synthesis of graphene-based nanosheets via chemical
reduction of exfoliated graphite oxide,” Carbon, 45, 1558–1565 (2007).
[27] 陳俊維,李紹先, “石墨烯氧化物的可調變螢光光譜之研究” 自然科
學簡訊第二十四卷第四期 (2012).
[28] Laura J. Cote, Franklin Kim and Jiaxing Huang, “Langmuir-Blodgett
Assembly of Graphite Oxide Single Layers,” J. Am. Chem. Soc., 131,
1043–1049 (2009).
[29] Laura J. Cote, Jaemyung Kim, Vincent C. Tung, Jiayan Luo, Franklin
Kim and Jiaxing Huang, “Graphene oxide as surfactant sheets,” Pure Appl.
Chem., 83(1), pp. 95–110 (2011).
[30] Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha,
Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang and Richard B.
Kaner, “Highly-efficient fabrication of nanoscolls from functionalized
graphene oxide by Langmuir-Blodgett method,” Carbon, 48, 4475-4482
(2010).
[31] E. Casero, A.M. Parra-Alfambra, M.D. Petit-Domínguez, F. Pariente, E.
Lorenzo, C. Alonso, “Differentiation between graphene oxide and reduced
graphene by electrochemical impedance spectroscopy (EIS),”Electrochemistry Communications, 20, 63–66 (2012).
[32] Vasilios Georgakilas, Athanasios B. Bourlinos, Radek Zboril, Theodore
A. Steriotis, Panagiotis Dallas, Athanasios K. Stuboscd and Christos Trapalisa,
“Organic functionalisation of graphenes,” C. Chem. Commun., 46, 1766
(2010).
[33] Sajini Vadukumpully, Jhinuk Gupta, Yongping Zhang, Guo Qin Xu and
Suresh Valiyaveettil, “Functionalization of surfactant wrapped graphene
nanosheets with alkylazides for enhanced dispersibility,” Nanoscale, 3, 303
(2011).
[34] Xing Zhong, Jun Jin, Shuwen Li, Zhiyong Niu, Wuquan Hu, Rong Li
and Jiantai Ma, “Aryne cycloaddition: highly efficient chemical modification
of graphene,” J. Chem.Commun., 46, 7340 (2010).
[35] Daniela C. Marcano , Dmitry V. Kosynkin , Jacob M. Berlin, Alexander
Sinitskii, Zhengzong Sun,Alexander Slesarev, Lawrence B. Alemany, Wei Lu
and James M. Tour, “Improved Synthesis of Graphene Oxide,” ACS Nano,
4(8), (2010).
[36] Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams,
Mark A. Hamon and Robert C. Haddon, “Solution Properties of Graphite and
Graphene,” J. Am. Chem. Soc., 128, 7720-7721 (2006).
[37] Kiyoung Jo, Taemin Lee, Hyun Jung Choi, Ju Hyun Park, Dong Jun Lee,
Dong Wook Lee and Byeong-Su Kim, “Stable Aqueous Dispersion of
Reduced Graphene Nanosheets via Non-Covalent Functionalization with
Conducting Polymers and Application in Transparent Electrodes,” Langmuir,
27(5), 2014–2018 (2011).
[38] 林正立, “溶膠-凝膠修飾電極和電流式乳酸生物感測器” 國立中正大學化學研究所 (2005).
[39] Yuyan Shao, Jun Wang, Hong Wu, Jun Liu, Ilhan A. Aksay, Yuehe Lina,
“Graphene Based Electrochemical Sensors and Biosensors: A Review,”
Electroanalysis, 22(10), 1027 – 1036 (2010).
[40] M. Zhou, Y. M. Zhai, S. J. Dong, “Electrochemical Sensing and
Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal.
Chem., 81, 5603 (2009).
[41] Changsheng Shan, Huafeng Yang, Dongxue Han, Qixian Zhang, Ari
Ivaska, and Li Niu, “Water-Soluble Graphene Covalently Functionalized by
Biocompatible Poly-L-lysine,” Langmuir, 25(20), 12030–12033 (2009).
[42] S. Belhousse, R. Boukherroub, S. Szunerits, N. Gabouze, A. Keffous, S.
Sama and A. Benaboura, “Electrochemical grafting of poly(3-hexylthiophene)
on porous silicon for gas sensing,” Surface and Interface Analysis, 42, 1041
(2010).
[43] Virginia Ruiz, Patrick G. Nicholson, Stuart Jollands, Pamela A. Thomas,
Julie V. Macpherson and Patrick R. Unwin, “Molecular ordering and 2D
conductivity in ultrathin poly(3-hexylthiophene)/gold nanoparticle composite
films,” J. Phys. Chem B., 109, 19335 (2005).
[44] Yasumichi Matsumoto, Michio Koinuma, Su Yeon Kim, Yusuke
Watanabe, Takaaki Taniguchi, Kazuto Hatakeyama, Hikaru Tateishi and
Shintaro Ida, “Simple Photoreduction of Graphene Oxide Nanosheet under
Mild Conditions,” ACS Applied Materials & Interfaces, 2(12), 3461–3466
(2010).
[45] Shin-Yi Yang, Kuo-Hsin Chang, Hsi-Wen Tien, Ying-Feng Lee,Shin-Ming Li, Yu-Sheng Wang, Jen-Yu Wang,Chen-Chi M. Ma and
Chi-Chang Hu, “Design and tailoring of a hierarchical graphene-carbon
nanotube architecture for supercapacitors,” J. Mater. Chem., 21, 2374 (2011).
[46] Eun-Young Choi, Tae Hee Han, Jihyun Hong, Ji Eun Kim,a Sun Hwa
Lee, Hyun Wook Kim and Sang Ouk Kim, “Noncovalent functionalization of
graphene with end-functional polymers,” J. Mater. Chem., 20, 1907–1912
(2010).