簡易檢索 / 詳目顯示

研究生: 謝信宏
Hsieh, Hsin-Hung
論文名稱: 奈米多孔模具製備及其在壓印技術上之應用
The fabrication of nanoporous mold and its application to imprint lithography process
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 壓印技術多孔模具逆式壓印無殘餘層
外文關鍵詞: imprint lithography, nanoporous mold, reversal imprint, non-residual layer
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 快速且經濟的奈米結構製作方法是奈米科技領域中最重要的研究之一,相較於傳統光學微影技術,奈米壓印技術具有高產量、低成本的優點,且相對不受光源曝光的物理限制;而在改良式的壓印技術中,逆式壓製程可直接在已圖案化的基材表面上堆疊、製作多層結構,此3D結構克服了多層結構的限制,並廣泛應用於生物感測器、微機電元件、光學元件…等方面。
    本研究結合逆式壓印製程與微過濾技術,利用多孔陶瓷的製作原理製備壓印用多孔模具。其方式為以低表面能材料PMSQ覆蓋多孔模具凸面孔洞,以機械幫浦提供的驅動力使奈米粒子的溶劑被凹槽孔洞排除後讓奈米粒子選擇性截留在凹槽形成濾餅。再利用模具與基板表面改質後的表面能差異在PET基板上轉印出無殘餘層圖案,且此技術可直接疊印出3D圖案結構,不需反應性乾蝕刻製程或殘餘層移除步驟。另一方面,若多孔模具凸面孔洞未經覆蓋的情況下,以微過濾將溶劑與粒子分離後,奈米粒子沉積於多孔模具上,亦可利用微接觸法轉印模具凸面的奈米粒子圖案至PET基板,並以此模具含浸乙醇應用於溶劑輔助壓印技術。

    Low cost and high speed nano structure manufacturing is always the first concern of nano technology. Nano imprinting lithography (NIL) breaks the physical limitation of exposure in conventional optical lithography, and looks after both high production and low cost. Among these improved imprinting techniques, reversal-imprinting process is more advanced in producing multi-layer structure, which is, fabricating structure above a patterned substrate. This three dimensional structure is widely applied on biosensors, micro-electronic devices, and many optical devices.
    This research employs reversal-imprinting and microfiltration, using manufacturing process of porous ceramics material to produce porous imprinting mold. Porous mold protruding facet is covered with poly(methylsilsesquioxane) (PMSQ), a low-surface energy material. In favor of mechanical pump, solvent is expelled from concave holes and nano particles selectively fill into concave structure and forming a cake. This technique fabricates non-residual layer pattern on PET substrate. Because surface modification providing surface energy difference between mold and substrate, the process does not require any further reactive ion etching (RIE) or residual layer remove. Three dimensional structures can be fabricated fast and easy. On the other hand, if porous mold uncovered, nano particles deposit at porous hole unselectively. Micro-contact printing transfers nano particle pattern on top of mold to PET substrate, which can be further applied on solvent-assisted imprinting by ethanol impregnation.

    中文摘要 I 英文摘要 II 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 序論 1 1-1 前言 1 1-2 微奈米壓印技術 2 1-3 陶瓷濾材的應用 2 1-4 研究動機 4 第二章 理論基礎與文獻回顧 5 2-1 壓印技術簡介 5 2-1-1 熱壓成形壓印技術 5 2-1-2 步進快閃式壓印微影 6 2-1-3 軟微影技術 7 2-1-4 逆式壓印技術 8 2-2 多孔材料 9 2-2-1 多孔材料之定義 9 2-2-2 多孔材料之製備 10 2-2-2.1 多孔陶瓷製備 10 2-2-1.2 低介電常數奈米孔洞薄膜製備 11 2-2-3 多孔材料應用於濾膜分離技術 12 2-2-3.1 無機濾膜的分類及構造 12 2-2-3.2微過濾機制 14 2-2-3.3 濾膜過濾阻力 15 2-3 模具脫膜層製作技術及原理 17 2-3-1表面張力與表面能 17 2-3-2 模具脫模層處理 20 第三章 實驗方法與步驟 22 3-1 實驗流程 22 3-2 實驗系統 23 3-2-1 熱壓印機台 23 3-2-2 氧電漿處理及乾式蝕刻(RIE)系統 23 3-2-2.1 抽氣系統 23 3-2-2.2 壓力監控系統 23 3-2-2.3 流量控制系統 24 3-2-2.4脈衝式直流電源供應器 24 3-2-3 管型高溫爐 24 3-3 實驗材料及藥品 24 3-3-1 基板材料 24 3-3-2 有機材料 25 3-3-3 基板清洗溶劑及實驗氣體 27 3-4 實驗步驟 27 3-4-1 脫膜層製備 28 3-4-2 多孔模具製備 29 3-4-2.1 PMSQ奈米多孔模具 29 3-4-2.2 AAO濾膜模具 29 3-4-2.3氧化鋁多孔模具 30 3-4-3多孔模具輔助壓印製程開發 30 3-4-3.1多孔模具輔助選擇性填入結合逆式壓印製程 31 3-4-3.1多孔模具輔助Micro-contact printing製程 31 3-4-3.2多孔模具結合溶劑輔助壓印製程 31 3-5 實驗分析與鑑定 32 第四章 結果與討論 36 4-1多孔模具製備之探討 36 4-1-1 PMSQ奈米多孔模具製備 37 4-1-2 AAO濾膜模具製備 38 4-1-3 氧化鋁多孔模具 39 4-1-3.1 壓印矽模具脫模層處理 39 4-1-3.2 以氧化鋁漿料製備多孔模具特徵圖形之探討 39 4-1-3.3 漿料燒結後之孔徑分布、孔隙度探討 40 4-1-4 多孔模具性質之比較 41 4-2 多孔模具輔助壓印製程之探討 42 4-2-1 多孔模具輔助選擇性填入結合逆式壓印製程 42 4-2-1.1 多孔模具覆蓋凸面製程探討 42 4-2-1.2 多孔模具與基板表面改質處理 43 4-2-1.3 奈米粒子選擇性填入製程探討 44 4-2-1.4 3D圖形結構堆疊 48 4-2-2 多孔模具輔助Micro-contact printing製程 48 4-2-3 多孔模具結合溶劑輔助壓印製程 49 第五章 結論 50 圖 52 表 94 參考文獻 99

    [1] 張文固, 奈米壓印(微影)技術簡介, 國立東華大學材料科學與工
    程學系.
    [2] S. Y. Chou, P. R. Krauss, P. J. Restrom, Appl. Phys. Lett.,
    67, 3114-3116(1995).
    [3] 陳守仁、吳兆棋、柯有倫、陳來勝, 機械工業雜誌, 279期2006.
    [4] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Science, 272, 85-87(1996).
    [5] 蔡宏營, 奈米轉印技術介紹.
    [6] T. Tsuru, Sol-Gel Sci Technol, 46, 349-361(2008).
    [7] H. Tana, A. Gilbertson, S. Y. Chou, J. Vac. Sci. Technol. B, 16,
    3926-3928(1998).
    [8] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M.
    Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G.
    Willson. Proceedings of SPIE, 3676, 379-391(1999).
    [9] Y. Xia, G. M. Whitesides, Annu. Rev. Mater. Sci., 28, 153-184(1998).
    [10] X. Cheng, L. J. Guo, Microelectron. Engineering., 71, 288-293(2004).
    [11] M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz Microelectron. Engineering., 57, 361-366 (2001).
    [12] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, A. F. Yee,
    J. Vac. Sci. Technol. B, 20, 2872-2876(2002).
    [13] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F.
    Yee, J. Vac. Sci. Technol. B, 20, 2881-2886(2002).
    [14] M. Nakajima, T. Yoshikawa, K. Sogo, Y. Hirai., Microelectronic Engineering, 83, 876-879(2006).
    [15] 謝峻仰, 改良式逆壓印技術應用於無殘餘層圖案轉移, 碩士論
    文, 國立成功大學化學工程研究所, (2006).
    [16] A. Jena, Characterization of Pore Structure: Foundation.
    [17] 李 鵬、劉有智、章德玉、康榮燦, 陶瓷分離膜支撐體製備技術
    研究進展,化工生產與技術, 13, 33-36(2006).
    [18] L. H. Lee, W. C. Chen, W. C. Liu, J. Polym. Sci. Polym.Chem,55, 1560-1571(2002).
    [19] 王 娟, 張長瑞, 馮 堅, 低介電常數介質薄膜的研究進展.
    [20] C. C. Yang, P. T. Wua, W. C. Chen, H. L. Chen., Polymer, 45, 5691-5702(2004).
    [21] H.C. Kim, J. B. Wilds, C. R. Kreller, W. Volksen, P. J. Brock, V. Y. LEE, T. Magbitang, J. L. Hedrick, C.J. Hawker, R.D. Miller, Adv. Mater., 14, 1637-1639(2002).
    [22] S. Kim, J. Cho, K. Char, Langmuir, 23, 6737-6743(2007).
    [23] K. Biswas, S. Gangopadhyay, H. C. Kim, R. D. Miller, Thin Solid Films, 514, 350-354(2006).
    [24] Y. Wu, P. Liu, B. S. Ong, Appl. Phys. Lett., 89, 013505-1-013505-3
    (2006).
    [25] Y. Y. Cheng, J. Y. Kan, I. S. Lin, Thin Solid Films, 462-463, 297-301
    (2004).
    [26] S. Yang, P. A. Mirau, C. S. Pai, O. Nalamasu, E. Reichmanis, J. C. Pai, Y. S. Obeng, J. Seputro, E. K. Lin, H. J. Lee, J. Sun, D. W. Gidley, Chem. Mater., 14, 369-374(2002).
    [27] H. C. Kim, W. Volksen, R. D. Miller, E. Huang, G. Yang, R. M. Briber, K, Shin, S, K. Satija, Chem. Mater., 15, 609-611(2003).
    [28] Q. R. Huang, Curtis W. Frank, D. Mecerreyes, W. Volksen, R. D. Miller, Chem. Mater., 17, 1521-1528(2005).
    [29] 無機分離膜之特性簡介.
    http://www.ftis.org.tw/eta/tech_platform/item2b_PDF/a03b020.pdf
    [30] G. Berthold, The membrane-coupled activated sludge process in
    municipal wastewater treatment, Technomic Publishing Company, Germany, 35(2001).
    [31] Y. Y. Hsing, “Treatment of Textile Effluents by H2O2/UV Oxidation Combined with RO Separation for Reuse,” Ph.D. Department of Water Resources and Environment Engineering, Tamkang University, Taipei, Taiwan (2003).
    [32] R.D. Noble, Membrane separations technology principles and Applications, (1999).
    [33] G. Belfort, R. H. Davis, A.L. Zydney, Journal of Membrane Science, 96, 1-58(1994).
    [34] W. R. Bowen, F. Jenner, Advances in Colloid and Interface Science, 56, 141-200(1995).
    [35] J.D. Lee, S. H. Lee, M. H. Jo, P. K. Park, C. H. Lee, J. W. Kwak,
    Environmental Science and Technology, 34, 3780-3788(2000).
    [36] Fluid Mechanics, Tutorial No. 4: Flow through porous passages.
    [37] 維基百科, http://zh.wikipedia.org/
    [38] D. K. Owens, R. C. Wendt, J. Appl. Polym. Sci., 13, 1741(1969).
    [39] W. R. Good, Journal of Colloid and Interface Science, 44, 63-71 (1973).
    [40] W. Neumann, R. J. Good, C. J. Hope, M. Sejpal, Journal of Colloid and Interface Science, 49, 291-304(1974).
    [41] J. B. Brzoska, I. Ben Azouz, F. Rondelez, Langmuir,10, 4367-4373
    (1994).
    [42] R. Stephen, Wasserman, Y. T. Tao, M. G., Whitesides, Langmuir, 5, 1074-1087(1989)
    [43] C. Peng, S. W. Pang, J. Vac. Sci. Technol. B, 24, 2968-2972(2006).
    [44] M. Morimatsu, T. Yoshikawa, H. Kawata,Y. Hiraia, J. Vac. Sci.
    Technol. B, 23, 375-379 (2005).
    [45] C. Peng, B. L. Cardozo, and S. W. Panga_J. Vac. Sci. Technol. B, 26, 632-635(2008).
    [46] Z. L. Hogan, C. R. Kreller, K. A. Tran, M. W. Hart, G. M. Wallraff, S. A. Swanson, W. Volksen, V. Y. Lee, T. P. Magbitang, J. L. Hedrick, C. J. Hawker, R. D. Miller, H. C. Kim, Materials Science and Engineering C,
    24,487-490(2004).
    [47] S. Y. Yang, I. Ryu, H. Y. Kim, J. K. Kim, S. K. Jang, T. P. Russell, Adv. Mater., 18, 709-712(2006).
    [48] J. M. Moon, D. Akin, Y. Xuan, P. D. Ye, P. Guo, R. Bashir, Biomed Microdevices, 11, 135-142(2009).
    [49] S. M. Kim, J. Kim, J. Lim, M. Choi, S. Kang . Appl. Phys. Lett. 91, 143117-1143117-3(2007).
    [50] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci, 26, 62(1968).
    [51] H. Xu, X. Y. Ling, J. V. Bennekom, X. Duan, M. J. W. Ludden, D. N. Reinhoudt, M. Wessling, R. G. H. Lammertink, J. Huskens, J. AM. CHEM. SOC., 131, 797-803(2009).

    下載圖示 校內:2019-08-10公開
    校外:2019-08-10公開
    QR CODE