簡易檢索 / 詳目顯示

研究生: 萬和家
Wan, He-Jia
論文名稱: 邊緣運算中基於速率拆分多址接取最小化多用戶之延時
Multi-User Delay Minimization of RSMA-Enabled Edge Computing
指導教授: 張志文
Chang, Chih-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 54
中文關鍵詞: 公平性行動邊緣計算多用戶延遲最小化速率分配速率拆分多址接取任務卸載
外文關鍵詞: Fairness, mobile edge computing, multi-user delay minimization, rate allocation, rate-splitting multiple access, task offloading
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在行動邊緣計算中使用多接取技術被認為是解決行動計算需求快速增長的有效方法,行動用戶透過此技術將延遲敏感的任務卸載到邊緣伺服器進行運算。本論文採用稱為速率拆分的多接取技術來支援多用戶的計算卸載。根據此多接取技術,用戶將母訊號拆成兩個子訊號,再給予不同功耗後疊加上傳;而邊緣伺服器則會根據各用戶的上傳資料量及上傳時間決定運算資源的分配比例。本論文主要利用優化任務卸載比例、伺服器運算資源分配比例、子訊號功耗分配比例及解碼順序來最小化最大的用戶計算延遲。由於問題為非凸優化問題,因此通過推導一系列的封閉表達式來簡化問題,並使用交替優化、KKT 演算法和窮舉法找出最小延時。數值結果顯示在邊緣運算系統中,速率拆分多址接取相較非正交多址接取及分頻多接取可降低邊緣計算用戶的延時,顯示速率拆分多址接取技術對行動邊緣運算算是極具吸引力的多用戶接取方案。

    Mobile Edge Computing (MEC) with Multiple Access (MA) is regarded as an promising way to fulfill the increasing computation demand from mobile user equipment (UE). In this work, Rate-Splitting Multiple Access (RSMA) is adopted to transmit the offloading tasks from UE to an MEC server. With RSMA, UE splits their original message to two sub-messages each assigned with different power. Then, MEC server decides the computation resource allocation ratio for each UE according to their offloading task size and transmission time. In order to minimize the worst-case delay among multiple UEs, an optimization problem is formulated with task offloading ratio, computation resource allocation, power allocation, and decoding order into account. Since the optimization problem is non-convex with coupled optimization variables, it can not be solved directly using existing approaches. To tackle this issue, we decompose the optimization problem into several sub-problems and alternately optimize each sub-problem until reaching a converged solution. For the sub-problems of task offloading ratio, closed-form expressions for the optimal solution are derived that greatly reduces solution complexity. Numerical results show that overall delay of the proposed RSMA-enabled MEC system is smaller than that of NOMA-enabled and FDMA-enabled counterparts, indicating the superiority of RSMA in supporting future MEC applications.

    Chinese Abstract i Abstract ii Acknowledgement iii Table of Contents iv List of Tables vi List of Figures vii List of Symbols viii List of Acronyms x 1 Introduction 1 1.1 Thesis Motivation and Paper Review 1 1.2 Contribution 3 1.3 Background 3 1.3.1 Rate Region of RSMA 3 2 System Model And Problem Formulation 7 2.1 System Model 7 2.1.1 Deployment 7 2.1.2 Task Arrangement 7 2.1.3 Channel And Signal Model 8 2.2 Problem Formulation 9 3 Proposed Method 12 3.1 Problem Decomposition 14 3.1.1 Problem Reformulation 14 3.1.2 Problem Decomposition 14 3.2 Rate of NOMA and FDMA 23 3.2.1 NOMA 23 3.2.2 FDMA 23 3.3 Complexity Analysis 24 4 Results and Discussion 26 4.1 Impact of Maximum Transmit Power 28 4.2 Impact of Computation Rate 40 4.3 Impact of Number of UEs 42 4.4 Impact of Distance Between UEs and BS 44 5 Conclusion 49 References 50 A Appendix 52 A.1 Derivation of Optimal UE Transmit Power 52 A.2 Derivation of The Convergence Value of Overall Delay 54

    [1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Communication Surveys & Tutorials, vol. 19, pp. 2322–2358, 2017.
    [2] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multiaccess edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Communications Surveys & Tutorials, vol. 19, pp. 1657–1681, 2017.
    [3] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing: Partial computation offloading using dynamic voltage scaling,” IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282, 2016.
    [4] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-efficient joint offloading and wireless resource allocation strategy in multi-MEC server systems,” in Proc. IEEE International Conference on Communications (ICC), 2018, pp. 1–6.
    [5] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.
    [6] F. Fang, Y. Xu, Z. Ding, C. Shen, M. Peng, and G. K.Karagiannidis, “Optimal task partition and power allocation for mobile edge computing with NOMA,” in Proc. 2019 IEEE Global Communications Conference (GLOBECOM), 2019.
    [7] Y. Wu, K. Ni, C. Zhang, P. Q. Li, and D. H. Tsang, “NOMA-assisted multiaccess mobile edge computing: A joint optimization of computation offloading and time allocation,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 244–12 258, 2018.
    [8] B. Liu, C. Liu, and M. Peng, “Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 4, pp. 1015–1027, 2020.
    [9] F. Fang, K. Wang, and Z. Ding, “Optimal task assignment and power allocation for downlink NOMA MEC networks,” in Proc. 2019 IEEE Globecom Workshops (GC Wkshps), 2019.
    [10] L. N. T. Huynh, Q.-V. Pham, T. D. Nguyen, M. D. Hossain, Y.-R. Shin, and E.-N. Huh, “Joint computational offloading and data-content caching in NOMA-MEC networks,” IEEE Access, vol. 9, pp. 12 943–12 954, 2021.
    [11] M. Nduwayezu, Q.-V. Pham, and W.-J. Hwang, “Online computation offloading in NOMA-based multi-access edge computing: A deep reinforcement learning approach,” IEEE Access, vol. 8, pp. 99 098–99 109, 2020.
    [12] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Processing Letters, vol. 21, no. 12, pp. 1501–1505, 2014.
    [13] B. Rimoldi and R. Urbanke, “A rate-splitting approach to the gaussian multipleaccess channel,” IEEE Transactions on Information Theory, vol. 42, no. 2, pp. 364–375, 1996.
    [14] B. Clerckx, J. Hamdi, M. Hao, and B. Rassouli, “Rate splitting for MIMO wireless networks: a promising PHY-layer strategy for LTE evolution,” IEEE Communications Magazine, vol. 54, no. 5, pp. 98–105, 2016.
    [15] O. V. Li, B. Clerckx, and Y. Mao, “Rate-splitting multiple access for downlink communication systems: Bridging, generalizing, and outperforming SDMA and NOMA,” EURASIP Journal on Wireless Communications and Networking, no. 133, 2018.
    [16] H. Liu, T. A. Tsiftsis, K. J. Kim, K. S. Kwak, and H. V. Poor, “Rate splitting for uplink NOMA with enhanced fairness and outage performance,” IEEE Transactions on Wireless Communications, vol. 19, no. 7, pp. 4657–4670, 2020.
    [17] S. A. Tegos, P. D. Diamantoulakis, and G. K. Karagiannidis, “On the performance of uplink rate-splitting multiple access,” IEEE Communications Letters, vol. 26, no. 3, pp. 523–527, 2022.
    [18] Y. Zhu, X. Wang, Z. Zhang, X. Chen, and Y. Chen, “A rate-splitting nonorthogonal multiple access scheme for uplink transmission,” in Proc. 2017 9t International Conference on Wireless Communications and Signal Processing (WCSP), 2017.
    [19] Z. Yang, M. Chen, W. Saad, W. Xu, and M. Shikh-Bahaei, “Sum-rate maximization of uplink rate splitting multiple access (RSMA) communication,” IEEE Transactions on Mobile Computing, vol. 21, no. 7, pp. 2596–2609, 2022.
    [20] J. Zeng, T. Lv, W. Ni, R. P. Liu, N. C. Beaulieu, and Y. J. Guo, “Ensuring max–min fairness of UL SIMO-NOMA: A rate splitting approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 11 080–11 093, 2019.

    下載圖示 校內:2025-01-12公開
    校外:2025-01-12公開
    QR CODE