| 研究生: |
何鎂寧 Ho, Mei-ning |
|---|---|
| 論文名稱: |
小鼠在奈米微粒暴露下其肺沖提液的蛋白質體變化 Changes in mouse bronchoalveolar lavage fluid proteome associated with nanoparticle exposure |
| 指導教授: |
廖寶琦
Liao, Pao-chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 奈米微粒 、支氣管肺泡沖提 、超微細碳黑 、蛋白質體 |
| 外文關鍵詞: | proteome, bronchoalveolar lavage, nanoparticle, ultrafine carbon black |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米微粒已經被認為對肺部有潛在性的傷害。而超微細碳黑(ultrafine carbon black, ufCB) 為奈米微粒的一種,在目前的研究發現,超微細碳黑會造成肺部發炎反應、上皮細胞傷害與增加血管通透性,造成一些蛋白質變化量的改變。而利用蛋白質體的研究,可以大範圍的得知哪些蛋白質會受到ufCB暴露而影響其含量。因此,本篇研究的主要目的,即要探討小鼠受到超微細碳黑的暴露後,其蛋白質體的變化為何。在本研究中,將小鼠分為暴露組(6隻)與對照組(6隻),並在暴露12小時後收集其肺沖提液進行分析。而在蛋白質體分析中,混合來自6個暴露組與混合來自6個對照組的肺沖提液,利用液相層析串聯式質譜儀(nano-HPLC-ESI-MS/MS)與資料庫的搜尋進行蛋白質鑑定,總共在兩組混合的肺沖提液中找到132個蛋白質。接著,為了更進一步得知蛋白質的變化,本研究利用液相層析質譜儀(nano-HPLC-ESI-MS)對12個個別樣本做比較性分析,找出因超微細碳黑暴露而有差異性的蛋白質。最後,有15個蛋白質受到暴露的影響而改變。這些蛋白質分別為group specific component, immunoglobulin heavy chain, MPR8 protein, zinc finger protein 36, surfactant associated protein D, kiningen 1, PREDICTED: solute carrier family 22 (organic cation transporter), member 15, SCRIB1(scribbled homolog 1), Sel1 (suppressor of lin-12) 1 homolog isoform a, Es 1 protein, hemopexin, OUT domain containing 7, profilaggrin, serine (or cysteine) proteinase inhibitor, clade A, member 3K, and 4631422O05Rik protein.而本研究的結果,也許可以提供一些資訊來了解由奈米微粒所誘發的肺部傷害與其機制。
Nanoparticles have been recognized as a potential hazard to the lung. Ultrafine carbon black (ufCB), one kind of nanoparticles, can cause pulmonary inflammation, epithelial damage, and increase of alveolar-capillary permeability in the lung, resulting in the alterations of protein expression. Proteomic research can help identify large-scale changed proteins associated with nanoparticles exposure. Therefore, the aim of this study is to investigate the proteome changes of mouse bronchoalveolar lavage fluid (BALF) associated with ufCB exposure by proteomic analysis. In this study, the mice were divided into an exposure (N = 6) and a control group (N = 6). The BALF samples were collected at 12hr postinstillation. The protein identification of two BALF samples pooled from 6 exposed mice and 6 controls were carried out by using nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (nano-HPLC-ESI-MS/MS) and database searching. A total of 132 distinct proteins from these two groups were revealed. To further evaluate changes in protein levels, differential analyses were performed on those 12 individual BALF samples by using nano-HPLC-ESI-MS. The results revealed that 15 proteins exhibited significant changes after exposure. These proteins are group specific component, immunoglobulin heavy chain, MPR8 protein, zinc finger protein 36, surfactant associated protein D, kiningen 1, PREDICTED: solute carrier family 22 (organic cation transporter), member 15, SCRIB1(scribbled homolog 1), Sel1 (suppressor of lin-12) 1 homolog isoform a, Es 1 protein, hemopexin, OUT domain containing 7, profilaggrin, serine (or cysteine) proteinase inhibitor, clade A, member 3K, and 4631422O05Rik protein. The result obtained from this study may provide useful information to better understand the mechanisms involved in lung disorders induced by nanoparticle exposure.
Adkins JN, Varnum SM, Auberry KJ, Moore RJ, Angell NH, Smith RD, Springer DL, Pounds JG. 2002. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 1:947-955.
Atkinson RW, Bremner SA, Anderson HR, Strachan DP, Bland JM, de Leon AP. 1999. Short-term associated between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London. Arch Environ Health 54(6):398–411.
Bell DY, Hook GE. 1979. Pulmonary alveolar proteinosis: analysis of airway and alveolar proteins. Am Rev Respir Dis 119:979–990.
Bernhard OK, Kapp EA, Simpson RJ. 2007. Enhanced analysis of the mouse plasma proteome using cysteine-containing tryptic glycopeptides. J Proteome Res 6:987-995.
Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, Barberis M, Pupa SM, Scarpa A, Ménard S. 2006. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol 208:28-38
Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199.
Clarke AG, Willison MJ, Zeki EM. 1984. A comparison of urban and rural aerosol composition using dichotomous samples. Atmos. Environ. 18:1707–1775.
Chang CC, Chiu HF, Wu YS, Li YC, Tsai ML, Shen CK, Yang CY. 2005. The induction of vascular endothelial growth factor by ultrafine carbon black contributes to the increase of alveolar-capillary permeability. Environ Health Perspect 113:454–460.
Ciais D, Cherradi N, Bailly S, Grenier E, Berra E, Pouyssegur J, Lamarre J, Feige JJ. 2004. Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene 23:8673-8680.
Cugno M, Scott CF, Salerno F, Lorenzano E, Muller-Esterl W, Agostoni A, Colman RW. 1999. Parallel reduction of plasma levels of high and low molecular weight kininogen in patients with cirrhosis. J Thromb Haemost 82:1428-1432.
Donato R. 2003. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60:540-551.
Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB. 2000. Intratracheal instillation as an exposure technique for evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55: 24-35.
Dusseldorp A, Kruize H, Brunekreef B, Hofschreuder P, de Meer G, van Oudvorst AB. 1995. Associations of PM10 and airborne iron with respiratory health of adults living near a steel factory. Am J Respir Crit Care Med 152:1932–1939.
Eberini I, Miller I, Gemeiner M, Haynes P, Aebersold R, Puglisi L, Sirtori CR, Gianazza E. 1999. A web site for the rat serum protein study group. Electrophoresis 20:3599-3602.
Ellis KM, Fozard JR. 2002. Species differences in bradykinin receptor-mediated responses of the airways. Auton Autacoid Pharmacol 22:3-16.
Ferin J, Oberdörster G, Soderholm SC, Gelein R. 1991. Pulmonary tissue access of ultrafine particles. J Aerosol Med 4(1):57–68.
Guo Y, Ma SF, Grigoryev D, Eyk JV, Garcia JG. 2005. 1-DE MS and 2-D LC-MS analysis of the mouse bronchoalveolar lavage proteome. Proteomics 5:4608–4624.
Günter O, Eva O, Jan O. 2005. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect 113:823–839.
Harder V, Gilmour PS, Lentner B, Karg E, Takenaka S, Ziesenis A, Stampfl A, Kodavanti UP, Heyder J, Schulz H. 2005. Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles. Inhal Toxicol 17:29-42.
Kasuga I, Pare PD, Ruan J, Connett JE, Anthonisen NR, Sandford AJ. 2003. Lack of association of group specific component haplotypes with lung function in smokers. Thorax 58(9):790-793.
Koyama S, Sato E, Nomura H, Kubo K, Miura M, Yamashita T, Nagai S, Izumi T. 1998. Bradykinin stimulates type II alveolar cells to release neutrophil and monocyte chemotactic activity and inflammatory cytokines. Am J Pathol 153(6):1885-1993.
Krishnasamy S, Gross NJ, Teng AL, Schultz RM, Dhand R. 1997. Lung "surfactant convertase" is a member of the carboxylesterase family. Biochem Biophys Res Commun 235:180-184.
Laden F, Neas LM, Dockery DW, Schwartz J. 2000. Association of fine particlulate matter from different sources with daily mortality in six US cities. Environ Health Perspect 108:941–947.
Lee YS, Chen PW, Tsai PJ, Su SH, Liao PC. 2006. Proteomics analysis revealed changes in rat bronchoalveolar lavage fluid proteins associated with oil mist exposure. Proteomics 6:2236–2250.
Lewis JA, Rao KM, Castranova V, Vallyathan V, Dennis WE, Knechtges PL.
Proteomic analysis of bronchoalveolar lavage fluid: effect of acute exposure to diesel exhaust particles in rats. Environ Health Perspect 115:756–763.
Lindahl M, Stahlbom B, Svartz J, Tagesson C. 1998. Protein patterns of human nasal and bronchoalveolar lavage fluids analyzed with two-dimensional gel electrophoresis. Electrophoresis 19:3222-3229.
Li XY, Brown D, Smith S, MacNee W, Donaldson K. 1999. Short-term
inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol 11:709–731.
Merkel D, Rist W, Seither P, Weith A, Lenter MC. 2005. Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Proteomics 5:2972–2980.
Markova NG, Marekov LN, Chipev CC, Gan SQ, Idler WW, Steinert PM. 1993. Profilaggrin is a major epidermal calcium-binding protein. Mol Cell Biol 13:613-625.
Noel-Georis I, Bernard A, Falmagen P, Wattiez R. 2001. Proteomics as the tool to search for lung disease markers in bronchoalveolar lavage. Dis. Markers 17:271-284.
Noël-Georis I, Bernard A, Falmagne P, Wattiez R. 2002. Database of bronchoalveolar lavage fluid proteins. J Chromatogr B 771:221-236.
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A,et al. 2002. Extrapulmonary transloction of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health 65A:1531–1543.
Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect 113:823–839.
Pekkanen J, Timonen KL, Ruuskanen J, Reponen A, Mirme A.1997. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 74:24–33.
Renwick LC, Brown D, Clouter A, Donaldson K. 2004. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle type. Occup Environ Med 61:442-447.
Rottoli P, Magi B, Cianti R, Bargagli E, Vagaggini C, Nikiforakis N, Pallini V, Bini L. 2005. Carbonylated proteins in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics 5:2612-2618.
Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Jnoue H, Morita A. 2006. Translocation pathway of the intratracheally instilled ultrafine particles
from the lung into the blood circulation in the mouse. Toxicol Pathol 34:949–957.
Signor L, Tigani B, Beckmann N, Falchetto R, Stoeckli M. 2004. Two-dimensional electrophoresis protein profiling and identification in rat bronchoalveolar lavage fluid following allergen and endotoxin challenge. Proteomics 4:2102-2110.
Veldhuizen RA, Ito Y, Marcou J, Yao LJ, McCaig L, Lewis JF. 1997. Effects of lung injury on pulmonary surfactant aggregate conversion in vivo and in vitro. Am J Physiol 272:L872-L878.
Wang JY, Shieh CC, Yu CK, Lei HY. 2001. Allergen-induced bronchial inflammation is associated with decreased levels of surfactant proteins A and D in a murine model of asthma. Clin Exp Allergy 31:652-662.
Wattiez R, Hermans C, Cruyt C, Bernard A, Falmagne P. 2000. Human bronchoalveolar lavage fluid protein two-dimensional database: study of interstitial lung diseases. Electrophoresis 21:2703-2712.
Wattiez R, Falmagne P. 2004. Proteomics of bronchoalveolar lavage fluid. J Chroma B 815:169-178.
Wu J, Kobayashi M, Sousa EA, Liu W, Cai J, Goldman SJ, Dorner AJ, Proian SJ, Kavuru MS, Qui Y, Thomassen MJ. 2005. Differential Proteomic Analysis of Bronchoalveolar Lavage Fluid in Asthmatics following Segmental Antigen Challenge. Mol Cell Proteomics 4:1251–1264.
Wu VM, Beitel GJ. 2004. A junctional problem of apical proportions: epithelial tube-size control by septate junctions in the Drosophila tracheal system. Curr Opin Cell Biol 16(5):493-499.
Yui S, Nakatani Y, Mikami M. 2003. Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol Pharm Bull 26:753–760.
Zhong CY, Zhou YM, Douglas GC, Witschi H, Pinkerton KE. 2005. MAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferation and squamous metaplasia in the lungs of rats. Carcinogenesis 26:2187-2195.
Zhu W, Brauchle MA, Di Padova F, Gram H, New L, Ono K, Downey JS, Han J. 2001. Gene suppression by tristetraprolin and release by the p38 pathway. Am J Physiol Lung Cell Mol Physiol 281:L409-L508.
邱碧英(貿易發展委員會副執行秘書), 工業雜誌 民國91年6月
謝春成(數位基因公司執行長), 經濟日報, 民91年8月