| 研究生: |
孫維君 Sun, Wei-chun |
|---|---|
| 論文名稱: |
生質柴油經濟分析與跨國供應鏈隨機最佳化 Biodiesel Economic Analysis and Global Supply Chain Stochastic Optimization |
| 指導教授: |
李家岩
Lee, Chia-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 生質柴油及生物質 、全國供應鏈 、成本效益分析 、隨機規劃 |
| 外文關鍵詞: | Biodiesel and biomass, global supply chain, Economic Benefit Analysis, stochastic programing |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,由於化石燃料的稀少使生質能源需求日漸益增,這也加速了此產業在國際貿易的發展,生質能源產業的發展潛力預期會在2050年達到每年約有500 EJ的貿易量。此篇研究提出在不確定性因子下的跨國型供應鏈數學規劃的模型,而我們所考慮的不確定性因子包括市場的需求及價格;供應鏈模型的國家包含了東南亞、歐洲及北美,生質柴油的原料的種植生產地及榨油廠假設在東南亞的國家,而歐洲及北美則假設是煉油廠並且將從東南亞國家運送來的植物油轉化為生質柴油並根據歐洲及北美的政府規定售於當地需求。本研究的全國供應鏈模型必須在不確定性因子下決定如何分配東南亞國家的土地種植地及最佳的運送路徑使達到最大的獲利。
這篇文獻主要分兩大部份。第一部分為分析經濟利益及計算各生物質之碳排放量,包含大豆、油菜籽、棕櫚樹、痲瘋樹、蓖麻油和廢食用油。識別生質能源價值之高經濟利益及低碳排放是有用的及有助於生物質的最佳發展。第二部分為建構兩階段混整數隨機規劃,在不確定下決定全球生質能源的最佳化設計供應鏈模型。第一部分包含決策最佳化資本額,而第二部分則探討此階段之資源決策,以及建議在各種情境下之最佳運輸路線。
During the past decade, the demand for biofuel has rapidly increased because of fossil fuel scarcity, which has resulted in the accelerating commercialization of the global biofuel industry. The development of international biofuel markets is expected to produce a global bioenergy potential of approximately 500 EJ per year by 2050. This study proposed a mathematical programming model for the optimal design of the global biofuel supply chain under uncertainty. We considered the uncertain factors of price and market demand. This uncertainty complicates the assessment of investment. The supply chain model involves countries in Southeast Asia, Europe, and North America. The raw material used for biodiesel formulation is produced in Southeast Asian planting fields and oil extraction factories. The refinery factory sites, where raw material is transformed into biodiesel, are located in Europe and North America. The resulting product is sold to customers in Europe and North America according to local government policies. This study aimed to determine how to allocate biomass cultivated area in Southeast Asia (i.e., optimal crop portfolio allocation) and to identify the optimal transportation paths under uncertainty to maximize the expected global profit in this supply chain.
This paper is divided into two main sections. The first section analyzes economic benefits and calculates the carbon emissions of biomass types, including soybean, rapeseed, palm trees, jatropha, castor, and waste cooking oil. Identifying valuable biodiesel with high economic benefits and low carbon emissions is useful and contributes to the optimal development of biomass. The second part formulates a two-stage recourse mixed-integer stochastic programing to determine the optimal design of a global biodiesel supply chain model under uncertainty. The first section involves a stage decision regarding optimal capital investment, whereas the second section discusses a stage recourse decision and suggests the optimal transportation flow in each scenario.
Journals:
Acevedo, J. C., Hernandez, J. A., Valdes, C. F., & Khanal, S. K. (2015). Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia. Bioresour Technol, 188, 117-123.
An, H., Wilhelm, W. E., & Searcy, S. W. (2011). Biofuel and petroleum-based fuel supply chain research: A literature review. Biomass and Bioenergy.
Bai, Y., Hwang, T., Kang, S., & Ouyang, Y. (2011). Biofuel refinery location and supply chain planning under traffic congestion. Transportation Research Part B: Methodological, 45(1), 162-175.
Bai, Y., Ouyang, Y., & Pang, J.-S. (2012). Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium. Energy Economics, 34(5), 1623-1633.
Bender, M. (1999). Economic feasibility review for community-scale farmer cooperatives for biodiesel. Bioresource Technology, 70(1), 81-87.
Castanheira, É. G., Grisoli, R., Coelho, S., Anderi da Silva, G., & Freire, F. (2015). Life-cycle assessment of soybean-based biodiesel in Europe: comparing grain, oil and biodiesel import from Brazil. Journal of Cleaner Production, 102, 188-201.
Chen, C.-W., & Fan, Y. (2012). Bioethanol supply chain system planning under supply and demand uncertainties. Transportation Research Part E: Logistics and Transportation Review, 48(1), 150-164.
Chu, Y., & You, F. (2013). Integration of Scheduling and Dynamic Optimization of Batch Processes under Uncertainty: Two-Stage Stochastic Programming Approach and Enhanced Generalized Benders Decomposition Algorithm. Industrial & Engineering Chemistry Research, 52(47), 16851-16869.
Dal-Mas, M., Giarola, S., Zamboni, A., & Bezzo, F. (2011). Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty. Biomass and Bioenergy, 35(5), 2059-2071.
Dantas Neto, A. A., Fernandes, M. R., Barros Neto, E. L., Castro Dantas, T. N., & Moura, M. C. P. A. (2014). Effect of Biodiesel/Diesel-Based Microemulsions on the Exhaust Emissions of a Diesel Engine. Brazilian Journal of Petroleum and Gas, 7(4), 141-153.
Garcia, D. J., & You, F. (2015). Supply chain design and optimization: Challenges and opportunities. Computers & Chemical Engineering, 81, 153-170.
Gunnarsson, H., Rönnqvist, M., & Lundgren, J. T. (2004). Supply chain modelling of forest fuel. European Journal of Operational Research, 158(1), 103-123.
Haas, M. J., McAloon, A. J., Yee, W. C., & Foglia, T. A. (2006). A process model to estimate biodiesel production costs. Bioresour Technol, 97(4), 671-678.
Hasheminejad, M., Tabatabaei, M., Mansourpanah, Y., Khatami far, M., & Javani, A. (2011). Upstream and downstream strategies to economize biodiesel production. Bioresour Technol, 102(2), 461-468.
Huang, Y., Chen, C.-W., & Fan, Y. (2010). Multistage optimization of the supply chains of biofuels. Transportation Research Part E: Logistics and Transportation Review, 46(6), 820-830.
Jahirul, M., Rasul, M., Chowdhury, A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis —A Technological Review. Energies, 5(12), 4952-5001.
Jegannathan, K. R., Eng-Seng, C., & Ravindra, P. (2011). Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes. Renewable and Sustainable Energy Reviews, 15(1), 745-751.
Kim, J., Realff, M. J., & Lee, J. H. (2011). Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Computers & Chemical Engineering, 35(9), 1738-1751.
Knothe, G. (2001). Historical perspectives on vegetable oil-based diesel fuels. Inform, 12(11), 1103-1107.
Lee, Chia-Yen and Peng Zhou (2015). Directional Shadow Price Estimation of CO2, SO2 and NOx in the United States Coal Power Industry 1990-2010. Energy Economics, 51, 493–502.
Lu, Q., Li, W.-Z., & Zhu, X.-F. (2009). Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management, 50(5), 1376-1383.
Mata, T. M., Martins, A. A., Sikdar, S. K., & Costa, C. A. V. (2011). Sustainability considerations of biodiesel based on supply chain analysis. Clean Technologies and Environmental Policy, 13(5), 655-671.
Meher, L., Vidyasagar, D., & Naik, S. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248-268.
Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., & Honnery, D. (2012). Life cycle cost and sensitivity analysis of palm biodiesel production. Fuel, 98, 131-139.
Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., . . . Yu, T.-H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238-1240.
Sikdar, S. K. (2003). Sustainable development and sustainability metrics. AIChE journal, 49(8), 1928-1932.
Teng, W. K., Ngoh, G. C., Yusoff, R., & Aroua, M. K. (2014). A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Conversion and Management, 88, 484-497.
Tong, K., Gong, J., Yue, D., & You, F. (2014). Stochastic Programming Approach to Optimal Design and Operations of Integrated Hydrocarbon Biofuel and Petroleum Supply Chains. ACS Sustainable Chemistry & Engineering, 2(1), 49-61.
Vicente, G., Martinez, M., & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol, 92(3), 297-305.
Wang, F., Fang, B., Zhang, Z., Zhang, S., & Chen, Y. (2008). The effect of alkanol chain on the interfacial composition and thermodynamic properties of diesel oil microemulsion. Fuel, 87(12), 2517-2522.
Xie, F., Huang, Y., & Eksioglu, S. (2014). Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California. Bioresource technology, 152, 15-23.
You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE Journal, 58(4), 1157-1180.
You, F., Wassick, J. M., & Grossmann, I. E. (2009). Risk management for a global supply chain planning under uncertainty: Models and algorithms. AIChE Journal, 55(4), 931-946.
Yue, D., You, F., & Snyder, S. W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering, 66, 36-56.
Zhang, Q., Chang, J., Wang, T., & Xu, Y. (2007). Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 48(1), 87-92.
Website:
International Energy Agency (IEA) (2008), “Assessing measures of energy efficiency performance and their application in industry”,https://www.iea.org/publications/freepublications/publication/JPRG_Info_Paper.pdf/, Assessed by Oct., 2015.
International Energy Agency (IEA) (2007b), “Tracking Industrial Energy Efficiency and CO2 Emissions”, https://www.iea.org/publications/freepublications/publication/tracking_emissions.pdf/, Paris, France, Assessed by Oct., 2015.
Intergovernmental Panel on Climate Change (IPCC) (2007), “Climate Change 2007 - Mitigation of Climate Change”, https://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4_wg3_full_report.pdf/, Cambridge, New York, Assessed by Oct., 2015.
Manufacturing process of GreenOdin biodiesel company, http://greenodin.com/products/go-biodiesel/, Assessed by Oct., 2015.
Pike Research, a part of the Navigant Consulting / Government Reports, http://www.xfuels.com/trillion-dollar-niche/mandated-growth.php, Assessed by Oct., 2015.
The Directorate-General for Energy, https://ec.europa.eu/energy, Assessed by Oct., 2015.
Online Trade Magazine Alternative Energy from Solar, Wind, Biomass, Fuel Cells and more, http://www.altenergymag.com/, Assessed by Oct., 2015.
Handbooks:
Nieves-Soto et al. (2012), “Biodiesel Current Technology: Ultrasonic Process a Realistic Industrial Application”, book chapter edited in Zhen Fang, Biodiesel-Feedstocks, Production and Applications, InTech Published.
Goto, S., M. Oguma, and N. Chollacoop (2010). Trade and Market Dynamics of Biodiesel, EAS-ERIA Biodiesel Fuel Trade Handbook, pp.170-183, Jakarta: ERIA.
P. Lamers et al. (2014), “Developments in International Liquid Biofuel Trade”, book chapter in M.Junginger et al., International Bioenergy Trade: History, status & outlook on securing sustainable bioenergy supply, demand and markets, pp. 17-40, Springer Science+Business Media Press.