| 研究生: |
林冠傑 Lin, Guan-Jie |
|---|---|
| 論文名稱: |
高效能錳觸媒於低溫去除甲苯之應用 Highly Efficient Mn2O3/Al2O3 Catalysts for Low-Temperature Toluene Abatement |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 低溫催化氧化 、甲苯降解 、錳基催化劑 、觸媒失活 、固定床反應器 、反應動力學 |
| 外文關鍵詞: | Low-temperature catalytic oxidation, Toluene degradation, Manganese-based catalyst, Catalyst deactivation, Fixed bed reactor, Kinetics |
| 相關次數: | 點閱:60 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在VOCs處理領域中,低溫催化氧化技術因其高潛力與良好的經濟性,已成為當前實廠應用中極具發展前景的方法之一。本文透過錳氧化金屬作為觸媒催化劑,錳基催化劑因具備優異的氧化還原活性、豐富的氧空位、良好的熱穩定性、低廉的成本、環境友好性,被視為極具潛力的 VOC 降解材料。這些優勢共同促進了 VOCs 的高轉化率與催化劑在實際操作條件下的耐久性。本研究使用Mn(NO3)2.4H2O及Al2O3鍛燒為觸媒材料。使用淋濕含浸法製備不同催化劑(Mn2O3)與載體(Al2O3)比例的低溫觸媒,並探討錳基觸媒於固定床反應器中對甲苯的降解表現。實驗結果發現41.8%的Mn2O3/Al2O3觸媒效果最佳,後續則深入研究最佳的41.8%的Mn2O3/Al2O3觸媒。在不同的操作參數下可得知在41.8%的Mn2O3/Al2O3觸媒對甲苯的降解效果隨甲苯濃度、空間速度或絕對溼度增加而減少,且隨氧氣濃度增加而升高,氧氣影響的最為明顯。在長期衰化實驗中,觸媒於250oC以上時可長期維持對甲苯之80%轉化效率。根據 TGA與EA分析結果顯示,在185°C條件下催化劑表面存在碳質物種,覆蓋活性位點,阻礙氣態氧附著,進而抑制晶格氧的再生。動力學分析證實本反應適用於 Mars–van Krevelen (MVK) 模型,所計算之 VOCs 吸附平衡常數與氧氣吸附平衡常數所對應的活化能分別為42.1與87.5 kJ/mol。後續礦化率實驗結果顯示,在高於350°C的條件下,礦化率僅達19.0%,顯示其完全氧化能力有限。綜上所述,本研究證實 Mn2O3/Al2O3催化劑雖具備良好的低溫活性,但在礦化效率與抗積碳性方面仍有進一步優化的空間。
In the field of VOCs treatment, low-temperature catalytic oxidation technology has emerged as one of the most promising methods for practical applications due to its high potential and favorable economic performance. In this study, manganese oxides were employed as catalytic materials. Manganese-based catalysts are considered highly promising for VOCs degradation because of their excellent redox activity, abundant oxygen vacancies, good thermal stability, low cost, and environmental friendliness. These advantages contribute to the high conversion efficiency of VOCs and the durability of the catalysts under actual operating conditions.
The catalyst materials were prepared by calcining Mn(NO3)2.4H2O and Al2O3. Various ratios of manganese oxides (Mn2O3) to the Al2O3 support were synthesized using the incipient wetness impregnation method to develop low-temperature catalysts. The catalytic performance of manganese-based catalysts for toluene degradation was evaluated in a fixed-bed reactor. Experimental results revealed that the catalyst with 41.8wt% Mn2O3/Al2O3 exhibited the best performance. Therefore, subsequent studies focused on the detailed investigation of this optimal catalyst.
Under condiotion with various operating parameters, it was observed that the toluene degradation efficiency of the 41.8wt% Mn2O3/Al2O3 catalyst decreased with increasing toluene concentration, gas hourly space velocity (GHSV), and absolute humidity (AH), but increased with higher oxygen concentration. Among these factors, the influence of oxygen concentration was the most significant. In long-term deactivation tests, the catalyst maintained over 80% toluene conversion efficiency at temperatures above 250°C.
According to the TGA and EA analyses, carbonaceous species were found on the catalyst surface at 185°C, covering active sites, hindering the adsorption of gaseous oxygen, and suppressing the regeneration of lattice oxygen. Kinetic analysis confirmed that the Mars–van Krevelen (MVK) model was applicable to the reaction, with the calculated activation energies for the VOCs adsorption equilibrium constant and oxygen adsorption equilibrium constant being 42.1 and 87.5 kJ/mol, respectively. Subsequent mineralization experiments showed that the mineralization rate reached only 19.0% at temperatures above 350 °C, indicating limited complete oxidation performance.
In summary, the study demonstrated that although the Mn2O3/Al2O3 catalyst exhibits good low-temperature activity, further improvement is needed in terms of mineralization efficiency and resistance to coke deposition.
Aguila, B., Sun, Q., Wang, X., O'Rourke, E., Al-Enizi, A. M., Nafady, A., & Ma, S. (2018). Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie, 130(32), 10264-10268.
Ahmad, B., Ismail, A., Li, Y., Sun, Z., & Zhu, Y. (2025). Excellent low-temperature catalytic performance on toluene oxidation over spinel CeaMn3-aO4 catalyst derived from pyrolysis of metal organic framework. Separation and Purification Technology, 360, 131130.
Armenta, M. A., Maytorena, V. M., Buentello-Montoya, D. A., Arroyo, E., Cota-Leal, M., Yong, D., & Olivas, A. (2022). Effect of catalytic hydrodynamics over microagglomerates of Mn2O3 and PdO supported on γ-χ-Al2O3 for dimethyl ether production. Fuel, 317, 123509.
Arsalanfar, M. (2024). An investigation of the catalytic performance of Fe–Mn/Al2O3 nanocatalyst for light olefins production using RSM method and kinetic study. International Journal of Chemical Kinetics, 56(1), 3-19.
Bai, B., Qiao, Q., Li, J., & Hao, J. (2016). Progress in research on catalysts for catalytic oxidation of formaldehyde. Chinese Journal of Catalysis, 37(1), 102-122.
Batzill, M. (2006). Surface Science Studies of Gas Sensing Materials: SnO2. Sensors, 6(10), 1345-1366.
Calzaferri, G., Gallagher, S. H., Lustenberger, S., Walther, F., & Brühwiler, D. (2023). Multiple equilibria description of type H1 hysteresis in gas sorption isotherms of mesoporous materials. Materials Chemistry and Physics, 296, 127121.
Candia-Lomelí, M., Covarrubias-Garcia, I., Aizpuru, A., & Arriaga, S. (2023). Preparation and physicochemical characterization of deep eutectic solvents and ionic liquids for the potential absorption and biodegradation of styrene vapors. Journal of Hazardous Materials, 441, 129835.
Chang, T., Wang, Y., Wang, Y., Zhao, Z., Shen, Z., Huang, Y., Veerapandian, S. K. P., De Geyter, N., Wang, C., Chen, Q., & Morent, R. (2022). A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. Science of The Total Environment, 828, 154290.
Chen, L., Noreña, L. E., Wang, J. A., Limas, R., Arellano, U., & González Vargas, O. A. (2021). Promoting Role of Amorphous Carbon and Carbon Nanotubes Growth Modes of Methane Decomposition in One-Pot Catalytic Approach. Catalysts, 11(10).
Cheng, L., Men, Y., Wang, J., Wang, H., An, W., Wang, Y., Duan, Z., & Liu, J. (2017). Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Applied Catalysis B: Environmental, 204, 374-384.
Chiang, P.-C., & Gao, X. (2022). Combustion Control. In P.-C. Chiang & X. Gao (Eds.), Air Pollution Control and Design (493-525). Singapore: Springer Nature Singapore.
Cruz, S. L., Rivera-García, M. T., & Woodward, J. J. (2014). Review of toluene action: clinical evidence, animal studies and molecular targets. Journal of drug and alcohol research, 3, 235840.
Dong, C., Qu, Z., Qin, Y., Fu, Q., Sun, H., & Duan, X. (2019). Revealing the Highly Catalytic Performance of Spinel CoMn2O4 for Toluene Oxidation: Involvement and Replenishment of Oxygen Species Using In Situ Designed-TP Techniques. ACS Catalysis, 9(8), 6698-6710.
Esposito, S. (2019). “Traditional” Sol-Gel Chemistry as a Powerful Tool for the Preparation of Supported Metal and Metal Oxide Catalysts. Materials, 12(4).
Esteves, L. M., Oliveira, H. A., & Passos, F. B. (2018). Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review. Journal of Industrial and Engineering Chemistry, 65, 1-12.
Feng, C., Jiang, F., Xiong, G., Chen, C., Wang, Z., Pan, Y., Fei, Z., Lu, Y., Li, X., Zhang, R., & Liu, Y. (2023). Revelation of Mn4+-Osur-Mn3+ active site and combined Langmuir-Hinshelwood mechanism in propane total oxidation at low temperature over MnO2. Chemical Engineering Journal, 451, 138868.
Gan, G., Fan, S., Li, X., Zhang, Z., & Hao, Z. (2023). Adsorption and membrane separation for removal and recovery of volatile organic compounds. Journal of Environmental Sciences, 123, 96-115.
Gao, J., Ding, Q., Yan, P., Liu, Y., Hu, Y., Ren, Y., Wang, X., Mustafa, T., Fan, Y., & Jiang, W. (2024). Direct cold sintering of translucent gamma-Al2O3 ceramics. Journal of the European Ceramic Society, 44(6), 4225-4231.
Genty, E., Siffert, S., & Cousin, R. (2019). Investigation of reaction mechanism and kinetic modelling for the toluene total oxidation in presence of CoAlCe catalyst. Catalysis Today, 333, 28-35.
Guo, Y., Wen, M., Li, G., & An, T. (2021). Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Applied Catalysis B: Environmental, 281, 119447.
He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., & Hao, Z. (2019). Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews, 119(7), 4471-4568.
He, L., Fan, Y., Bellettre, J., Yue, J., & Luo, L. (2020). A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renewable and Sustainable Energy Reviews, 119, 109589.
Holmes, M. D., & Murray, B. P. (2024). Toluene Toxicity. In StatPearls. StatPearls Publishing.
Huang, H., Xu, Y., Feng, Q., & Leung, D. Y. (2015). Low temperature catalytic oxidation of volatile organic compounds: a review. Catalysis Science & Technology, 5(5), 2649-2669.
Huang, Y.-C., Chang, T.-Y., Narindri Rara Winayu, B., & Chu, H. (2025). Formation of CuAl2O4 spinel structure from Cu loading control for improvement of styrene low temperature catalytic oxidation: Stability, characterization, kinetics. Journal of Environmental Chemical Engineering, 13(3), 116792.
Hugenschmidt, M., Adrion, K., Marx, A., Müller, E., & Gerthsen, D. (2023). Electron-Beam-Induced Carbon Contamination in STEM-in-SEM: Quantification and Mitigation. Microscopy and Microanalysis, 29(1), 219-234.
Huo, J., Tessonnier, J.-P., & Shanks, B. H. (2021). Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catalysis, 11(9), 5248-5270.
Ilton, E. S., Post, J. E., Heaney, P. J., Ling, F. T., & Kerisit, S. N. (2016). XPS determination of Mn oxidation states in Mn (hydr)oxides. Applied Surface Science, 366, 475-485.
Jähnichen, T., Carstens, S., Franz, M., Laufer, O., Wenzel, M., Matysik, J., & Enke, D. (2023). Towards High Surface Area α-Al2O3–Mn-Assisted Low Temperature Transformation. Materials, 16(8).
Ji, K., Meng, F., Xun, J., Liu, P., Zhang, K., Li, Z., & Gao, J. (2019). Carbon Deposition Behavior of Ni Catalyst Prepared by Combustion Method in Slurry Methanation Reaction. Catalysts, 9(7).
Jian, G., Xu, Y., Lai, L.-C., Wang, C., & Zachariah, M. R. (2014). Mn3O4 hollow spheres for lithium-ion batteries with high rate and capacity. Journal of Materials Chemistry A, 2(13), 4627-4632.
Jiang, N., Song, X., Bian, H., Song, X., Wang, M., Long, W., Zhong, S., & Jia, L. (2023). Interfacial microstructure evolution and mechanical properties of Al2O3/Al2O3 joints brazed with Ti–Ni–Nb filler metal. Journal of Materials Research and Technology, 24, 3901-3912.
Jurtz, N., Kraume, M., & Wehinger, G. D. (2019). Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). 35(2), 139-190.
Kamal, M. S., Razzak, S. A., & Hossain, M. M. (2016). Catalytic oxidation of volatile organic compounds (VOCs) – A review. Atmospheric Environment, 140, 117-134.
Kim, K.-H., Szulejko, J. E., Raza, N., Kumar, V., Vikrant, K., Tsang, D. C. W., Bolan, N. S., Ok, Y. S., & Khan, A. (2019). Identifying the best materials for the removal of airborne toluene based on performance metrics - A critical review. Journal of Cleaner Production, 241, 118408.
Kumar, A., Hugger, B., & Meadows, J. W. (2020). Modelling of High-Pressure Combustion Rig with After-Burner and Supersonic Nozzle using Plug Flow Reactor Network Model. AIAA Propulsion and Energy 2020 Forum,
Lei, J., Zhang, Q., Wang, Y., & Zhang, H. (2022). Direct laser melting of Al2O3 ceramic paste for application in ceramic additive manufacturing. Ceramics International, 48(10), 14273-14280.
Lewandowski, D. A. (2017). Design of thermal oxidation systems for volatile organic compounds. CRC press.
Li, X., Zhang, L., Yang, Z., Wang, P., Yan, Y., & Ran, J. (2020). Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Separation and Purification Technology, 235, 116213.
Liu, B., Ji, J., Zhang, B., Huang, W., Gan, Y., Leung, D. Y. C., & Huang, H. (2022). Catalytic ozonation of VOCs at low temperature: A comprehensive review. Journal of Hazardous Materials, 422, 126847.
Liu, B., Liu, H., Sun, S., Ma, Z., Zhang, Y., Nie, R., & Fu, J. Hydrothermal Redox Driven Phase and Defect Engineering of MnO2 for Enhanced HMF Oxidation at Ambient Oxygen Pressure. Advanced Functional Materials, 2504172.
Liu, J. (2024). A study of advanced RTO (Regenerative Thermal Oxidizer) technology by optimised combustor integration and carbon-free fuel for non-carbon emissions.
Liu, N., Chen, X., Zhang, J., & Schwank, J. W. (2014). A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 225, 34-51.
Liu, R., Wu, H., Shi, J., Xu, X., Zhao, D., Ng, Y. H., Zhang, M., Liu, S., & Ding, H. (2022). Recent progress on catalysts for catalytic oxidation of volatile organic compounds: a review. Catalysis Science & Technology, 12(23), 6945-6991.
Lyu, Y., Li, C., Du, X., Zhu, Y., Zhang, Y., & Li, S. (2020). Catalytic removal of toluene over manganese oxide-based catalysts: a review. Environmental Science and Pollution Research, 27(3), 2482-2501.
Lyu, Y., Xu, J., Cao, Q., Zhou, Z., Hu, W., & Liu, X. (2022). Highly efficient removal of toluene over Cu-V oxides modified γ-Al2O3 in the presence of SO2. Journal of Hazardous Materials, 436, 129041.
Marques, G. S., Domingues, L. H. P., Fitz Bregenski, V., Dusi, G. G., Hamerski, F., & da Silva, V. R. (2023). Synthesis of propyl acetate by sulfated zirconia: kinetics and mechanism modeling. Reaction Kinetics, Mechanisms and Catalysis, 136(1), 397-414.
Mehrabadi, B. A. T., Eskandari, S., Khan, U., White, R. D., & Regalbuto, J. R. (2017). Chapter One - A Review of Preparation Methods for Supported Metal Catalysts. In C. Song (Ed.), Advances in Catalysis (Vol. 61, pp. 1-35). Academic Press.
Mehralipour, J., Jonidi Jafari, A., Gholami, M., Esrafili, A., & Kermani, M. (2023). Photocatalytic-proxone process application in the degradation of toluene-diisocyante, and methylene diphenyl diisocyanate from polluted air. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114549.
Meng, Q.; Wang, W.; Weng, X.; Liu, Y.; Wang, H.; Wu, Z. Active Oxygen Species in Lan+1NinO3n+1 Layered Perovskites for Catalytic Oxidation of Toluene and Methane. The J. Phys. Chem. C 2016, 120 (6), 3259-3266.
Mo, Y., Li, C., Li, H., Estudillo-Wong, L. A., Wu, L., Wang, Y., Yu, H., Li, D., & Feng, Y. (2024). Hydrothermal stability of gamma-Al2O3 supports varied with crystal plane orientation of pseudo-boehmite precursor. Chemical Engineering Science, 287, 119705.
Mortensen, R. L., Noack, H.-D., Pedersen, K., Dunstan, M. A., Wilhelm, F., Rogalev, A., Pedersen, K. S., Mielby, J., & Mossin, S. (2024). Understanding the reversible and irreversible deactivation of methane oxidation catalysts. Applied Catalysis B: Environment and Energy, 344, 123646.
Murzin, D. Y. (2022). Cooperative catalytic nanokinetics. Chemical Engineering Science, 256, 117684.
Nabgan, W., Ansari, M. Z., Ikram, M., Alqaraghuli, H., Parashuram, L., Van Tran, T., Amin, M. A., Tuan Abdullah, T. A., Djellabi, R., Medina, F., & Jalil, A. A. (2024). Sustainable coke-resistant Ca-Al nano-sized catalyst for cogenerating hydrogen and high-value liquid fuels via pyrolysis catalytic steam reforming reaction of the polystyrene-phenol mixture. Applied Catalysis B: Environmental, 342, 123405.
Narindri Rara Winayu, B., Shih, C.-S., Tseng, T.-K., & Chu, H. (2024). Styrene removal by low-temperature catalytic oxidation using Mn2O3/Al2SiO5. Journal of Physics and Chemistry of Solids, 184, 111739.
Nesbitt, H. W., & Banerjee, D. (1998). Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. 83(3-4), 305-315.
Palmisano, G., Jitan, S. A., & Garlisi, C. (2022). "Chapter 3 - Adsorption models, surface reaction, and catalyst architectures". In G. Palmisano, S. A. Jitan, & C. Garlisi (Eds.), Heterogeneous Catalysis (pp. 63-99): Elsevier.
Perego, C., & Peratello, S. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52(2), 133-145.
Prins, R. (2020). On the structure of γ-Al2O3. Journal of Catalysis, 392, 336-346.
Qiang, J., Li, H., Hui, S., & Wang, D. (2023). Supported Mn2O3-based catalysts for NO-SCO: an experimental study. Environmental Science and Pollution Research, 30(2), 2555-2574.
Rose, J. W. (1998). Condensation Heat Transfer Fundamentals. Chemical Engineering Research and Design, 76(2), 143-152.
Said, S., Mikhail, S., & Riad, M. (2020). Recent processes for the production of alumina nano-particles. Materials Science for Energy Technologies, 3, 344-363.
Scott Fogler, H. (2020). Elements of chemical reaction engineering (sixth ed.): Pearson: London.
shi, L., Duan, B., Zhu, Z., Sun, C., Zhou, J., & Walsh, A. (2020). Preparing copper catalyst by ultrasound-assisted chemical precipitation method. Ultrasonics Sonochemistry, 64, 105013.
Si, W., Wang, Y., Peng, Y., Li, X., Li, K., & Li, J. (2015). A high-efficiency γ-MnO2-like catalyst in toluene combustion. Chemical communications, 51(81), 14977-14980.
Soni, V., Singh, P., Shree, V., & Goel, V. (2018). Effects of VOCs on Human Health. In N. Sharma, A. K. Agarwal, P. Eastwood, T. Gupta, & A. P. Singh (Eds.), Air Pollution and Control (pp. 119-142). Springer Singapore.
Suresh, S., Celshia, S., Selvamani, M., Suresh, V., & Hussein, M. A. (2024). Synthesis and Characterization of Mn2O3 and Its Electrochemical Properties in Relation to Dopamine. Cureus, 16(8).
Taghavi Fardood, S., Moradnia, F., Yekke Zare, F., Heidarzadeh, S., Azad Majedi, M., Ramazani, A., Sillanpää, M., & Nguyen, K. (2024). Green synthesis and characterization of α-Mn2O3 nanoparticles for antibacterial activity and efficient visible-light photocatalysis. Scientific Reports, 14(1), 6755.
Tang, H., Wu, S., Ding, L., Fang, N., Zhang, Q., & Chu, Y. (2024). Catalytic oxidation and mixed oxidation of ethyl acetate: A review. Separation and Purification Technology, 343, 126980.
Tareen, J. (2001). Hydrothermal synthesis of native elements and simple oxides. In. Noyes Publications.
Tseng, T.-K., Chu, H., & Hsu, H.-H. (2003). Characterization of γ-Alumina-Supported Manganese Oxide as an Incineration Catalyst for Trichloroethylene. Environmental Science & Technology, 37(1), 171-176.
Velinova, R., Grahovski, B., Kolev, H., Ivanov, G., Todorova, S., & Naydenov, A. (2022). Reaction kinetics and mechanism of n-hexane catalytic combustion over Co-ZSM-5 zeolites. Materials Today: Proceedings, 61, 1255-1259.
Wang, J., Wang, P., Wu, Z., Yu, T., Abudula, A., Sun, M., Ma, X., & Guan, G. (2023). Mesoporous catalysts for catalytic oxidation of volatile organic compounds: preparations, mechanisms and applications. 39(4), 541-565.
Wang, L., He, H., Zhang, C., Wang, Y., & Zhang, B. (2016). Effects of precursors for manganese-loaded γ-Al2O3 catalysts on plasma-catalytic removal of o-xylene. Chemical Engineering Journal, 288, 406-413.
Wang, L., He, H., Zhang, C., Wang, Y., & Zhang, B. (2016). Effects of precursors for manganese-loaded γ-Al2O3 catalysts on plasma-catalytic removal of o-xylene. Chemical Engineering Journal, 288, 406-413.
Wang, S., & Lu, G. Q. (1998). Thermogravimetric Analysis of Carbon Deposition over Ni/γ-Al2O3 Catalysts in Carbon Dioxide Reforming of Methane. Energy & Fuels, 12(6), 1235-1240.
Wang, X., Luo, Y., Gao, Y., Han, D., Wang, Z., Shen, B., & Wang, X. (2024). Recent advances in catalysts for toluene elimination via catalytic oxidation. Chemosphere, 368, 143720.
Wang, Z., Peng, S., Zhu, C., Wang, B., Du, B., Cheng, T., Jiang, Z., & Sun, L. (2023). Study of the denitration performance of a ceramic filter using a manganese-based catalyst. RSC advances, 13(1), 344-354.
Wantz, E., Kane, A., Lhuissier, M., Amrane, A., Audic, J.-L., & Couvert, A. (2021). A mathematical model for VOCs removal in a treatment process coupling absorption and biodegradation. Chemical Engineering Journal, 423, 130106.
Woodward, J. J., & Braunscheidel, K. M. (2023). The Effects of the Inhalant Toluene on Cognitive Function and Behavioral Flexibility: A Review of Recent Findings. Addiction Neuroscience, 5, 100059.
Xie, T., Zhang, Z.-Y., Zheng, H.-Y., Yu, B., & Xiao, Q. (2023). Performance optimization of a cavity type concentrated solar reactor for methane dry reforming reaction with coupled optics-CFD modeling. Chemical Engineering Science, 275, 118737.
Xin, Y., Cheng, L., Lv, Y., Jia, J., Han, D., Zhang, N., Wang, J., Zhang, Z., & Cao, X.-M. (2022). Experimental and Theoretical Insight into the Facet-Dependent Mechanisms of NO Oxidation Catalyzed by Structurally Diverse Mn2O3 Nanocrystals. ACS Catalysis, 12(1), 397-410.
Xiong, Y., Zhou, J., Xing, Z., & Du, K. (2021). Cancer risk assessment for exposure to hazardous volatile organic compounds in Calgary, Canada. Chemosphere, 272, 129650.
Xu, J., Deng, Y.-Q., Luo, Y., Mao, W., Yang, X.-J., & Han, Y.-F. (2013). Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. Journal of Catalysis, 300, 225-234.
Yang, C., Miao, G., Pi, Y., Xia, Q., Wu, J., Li, Z., & Xiao, J. (2019). Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chemical Engineering Journal, 370, 1128-1153.
Yang, H., Jia, L., Zhang, Z., Xu, B., Zhang, Q., Yuan, S., Xiao, Y., Nan, Z., Zhang, M., Zhang, Y., & Ohno, T. (2022). Enhanced photocatalytic VOCs degradation performance on Fe-doped ceria under visible light. Applied Materials Today, 29, 101651.
Yang, X., Yu, X., Lin, M., Ma, X., & Ge, M. (2019). Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation. Catalysis Today, 327, 254-261.
Ye, Z., Giraudon, J.-M., De Geyter, N., Morent, R., & Lamonier, J.-F. (2018). The Design of MnOx Based Catalyst in Post-Plasma Catalysis Configuration for Toluene Abatement. Catalysts, 8(2).
Yu, Y., Lundin, S.-T. B., Obata, K., Sarathy, S. M., & Takanabe, K. (2023). Improved Homogeneous–Heterogeneous Kinetic Mechanism Using a Langmuir–Hinshelwood-Based Microkinetic Model for High-Pressure Oxidative Coupling of Methane. Industrial & Engineering Chemistry Research, 62(14), 5826-5838.
Zeng, X., Li, B., Liu, R., Li, X., & Zhu, T. (2020). Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system. Chemical Engineering Journal, 384, 123362.
Zhang, C., Cao, Y., Wang, Z., Tang, M., Wang, Y., Tang, S., Chen, Y., & Tang, W. (2022). Insights into the Sintering Resistance of Sphere-like Mn2O3 in Catalytic Toluene Oxidation: Effect of Manganese Salt Precursor and Crucial Role of Residual Trace Sulfur. Industrial & Engineering Chemistry Research, 61(19), 6414-6426.
Zhang, C., Cao, Y., Wang, Z., Tang, M., Wang, Y., Tang, S., Chen, Y., & Tang, W. (2022). Insights into the Sintering Resistance of Sphere-like Mn2O3 in Catalytic Toluene Oxidation: Effect of Manganese Salt Precursor and Crucial Role of Residual Trace Sulfur. Industrial & Engineering Chemistry Research, 61(19), 6414-6426.
Zhang, H., Li, K., Li, L., Liu, L., Meng, X., Sun, T., Jia, J., & Fan, M. (2018). High efficient styrene mineralization through novel NiO-TiO2-Al2O3 packed pre-treatment/post-treatment dielectric barrier discharge plasma. Chemical Engineering Journal, 343, 759-769.
Zhang, H., Meng, T., Zhang, M., Zhang, P., Sun, P., Li, H., & Yu, Y. (2025). Understanding the Role of Active Lattice Oxygen in CO Oxidation Catalyzed by Copper-Doped Mn2O3@MnO2. Molecules, 30(4).
Zhang, X., Zhao, H., Song, Z., Liu, W., Zhao, J., Ma, Z. a., Zhao, M., & Xing, Y. (2019). Insight into the effect of oxygen species and Mn chemical valence over MnOx on the catalytic oxidation of toluene. Applied Surface Science, 493, 9-17.
Zhang, Y., Wang, Y., Xie, R., Huang, H., Leung, M. K. H., Li, J., & Leung, D. Y. C. (2022). Photocatalytic Oxidation for Volatile Organic Compounds Elimination: From Fundamental Research to Practical Applications. Environmental Science & Technology, 56(23), 16582-16601.
Zhang, Y., Zhang, H., & Yan, Y. (2020). Kinetic studies of trichloroethylene catalytic combustion over Cr/ZSM-5/PSSF composite. Separation and Purification Technology, 251, 116827.
Zhang, Z., Jiang, Z., & Shangguan, W. (2016). Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catalysis Today, 264, 270-278.
Zheng, G., Wei, K., Kang, X., Fan, W., Ma, N. L., Verma, M., Ng, H. S., & Ge, S. (2023). A new attempt to control volatile organic compounds (VOCs) pollution - Modification technology of biomass for adsorption of VOCs gas. Environmental Pollution, 336, 122451.
Zhou, X., Zhou, X., Wang, C., & Zhou, H. (2023). Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere, 313, 137489.
張子芸. (2024). CuO/Al2O3 catalyst for the low-temperature catalytic oxidation of toluene. National Cheng Kung University, Tainan, Taiwan, Unpublished Master's thesis.