| 研究生: |
李思翰 Li, Ssu-Han |
|---|---|
| 論文名稱: |
以水熱合成法合成硫化鐵礦物及其磁特性和相轉變之研究 Study on magnetic properties and phase transformations of iron sulfide minerals synthesized by using the hydrothermal method |
| 指導教授: |
陳燕華
Chen, Yen-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 硫化鐵礦物 、水熱合成法 、長晶機制 、同步輻射 、表面形貌 、磁特性 、磁力顯微鏡 |
| 外文關鍵詞: | iron sulphide minerals, hydrothermal method, transformation sequence, transformation mechanism, synchrotron radiation, magnetic properties |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硫化鐵礦物以各種不同的礦物相存在於自然界中,本研究利用水熱合成法合成硫化鐵礦物,先透過改變長晶的溫度及時間,觀察硫化鐵在不同溫度及時間下之礦物相變化;接著探討鐵/硫莫爾數比例之改變對其長晶過程之影響,本實驗使用X光繞射儀分析硫化鐵礦物之晶體結構及相轉變序列,同時利用國家同步輻射研究中心X光繞射技術,以即時方式分析硫化鐵相轉變之過程,並與非即時實驗之結果相互比較,再利用掃描式電子顯微鏡及穿透式電子顯微鏡觀察硫化鐵礦物之形貌及結晶度分析,最後探討其相轉變機制。接著利用超導量子干涉儀與震動樣品磁力儀量測硫化鐵礦物之巨觀磁特性,並使用磁力顯微鏡掃描磁力影像,且觀察其磁區分布及磁場方向等微觀磁特性,並探討巨觀與微觀尺度磁性特徵之異同。
在非即時實驗中,改變加熱溫度及持溫時間,觀察其相轉變序列為:四方硫鐵礦(FeS)→ 硫複鐵礦(Fe3S4)→ 菱硫鐵礦(Fe9S11)→ 磁黃鐵礦(Fe9S10);而即時實驗結果顯示其相轉變序列為:四方硫鐵礦(FeS) → 硫複鐵礦(Fe3S4) → 磁黃鐵礦(Fe9S10);然而非即時與即時實驗結果中,可以發現在非即時實驗中菱硫鐵礦(Fe9S11)的出現,進一步探討其原因較有可能為實驗之合成環境中,鐵與硫濃度分布不均所導致菱硫鐵礦(Fe9S11)的生成與否。改變鐵/硫莫爾數之比例,探討不同的鐵硫比例如何影響長晶過程,由非即時與即時之實驗結果可得知:鐵/硫莫爾數比例的差異的確會使長晶序列中硫化鐵礦物的生成時間有所差異。
由掃描式電子顯微鏡及穿透式電子顯微鏡之影像得知:硫複鐵礦(Fe3S4)的粒徑大小約為50 ~ 200 nm,形貌無特定形狀,結構中有明顯的缺陷存在;磁黃鐵礦(Fe9S10)的粒徑大小約為1 ~ 4 μm,呈現片狀六角形狀;硫複鐵礦(Fe3S4)與磁黃鐵礦(Fe9S10)皆為單晶結構。巨觀磁特性得知:硫複鐵礦(Fe3S4)為亞鐵磁性,且為單磁域/擬單磁域結構;磁黃鐵礦(Fe9S10)為反鐵磁性並含有少量亞鐵磁性,為單磁域結構。由微觀之磁力顯微鏡影像可得知:硫複鐵礦(Fe3S4)粒徑大小70 ~ 110 nm、磁域結構為單磁域;磁黃鐵礦(Fe9S10)則因為磁力訊號微弱,以表面形貌的凡德瓦力貢獻為主,看不出其磁性結構。
本研究透過探討長晶溫度及時間之變化與不同鐵/硫莫爾數比例,對硫化鐵長晶過程之影響,藉此長晶實驗模擬自然界中「溫度」、「時間」及「富鐵與富硫」等條件對硫化鐵礦物生成機制之影響;並同時討論硫複鐵礦與磁黃鐵礦在巨觀及微觀磁性量測之磁性參數及磁域結構之差異;此結果應可提供後續進行相關實驗之參考依據。
Iron sulphide minerals are present in Earth’s crust in various Fe-S phases. In this study, iron sulphide minerals were synthesized via a hydrothermal method and their phase transition mechanisms and magnetic properties were investigated. Ex situ and in situ X-ray diffraction results of the iron-sulphur system under hydrothermal conditions suggested that the transformation sequence followed the different order. Futher study the difference between the experimental method of ex situ and in situ. And the generate time of iron sulphide minerals were affected by the moore ratio of Fe-S. Greigite showed a granular morphology with particle diameters around 50 ~ 200 nm and the HRTEM showed few defects distributed throughout the crystal; pyrrhotite was comprised of stacked hexagonal sheets with thousands of nanometers in width. Magnetic properties of greigite showed ferromagnetic behavior and single/pseudo-single domain structure. Pyrrhotite was anti-ferromagnetic containing ferromagnetic behavior and single domain structure. Overall, this study provides new information on the phase transition mechanism, related reaction formulas, and magnetic properties of iron sulphides, and it emphasizes the important role played by temperature, time, and moore ratio in phase transitions.
Akhtar, M., Akhter, J., Malik, M. A., O’Brien, P., Tuna, F., Raftery, J., and Helliwell, M. (2011) Deposition of iron sulfide nanocrystals from single source precursors. Journal of Materials Chemistry, 21, 9737-9745.
Amend, J. P., Edwards, K. J., and Lyons, T. W. (2004) Sulfur Biogeochemistry: Past and Present. Geological Society of America, 379, 67.
Apostolova, R. D., Kolomoets, O. V., and Shembel, E. M. (2009) Electrolytic iron sulfides for thin-layer lithium-ion batteries. Russian Journal of Applied Chemistry, 82, 1939-1943.
Bai, P., Zheng, S., Chen, C., and Zhao, H. (2014) Investigation of the Iron− Sulfide Phase Transformation in Nanoscale. Crystal Growth & Design, 14, 4295-4302.
Bazylinski, D. A., Frankel, R. B., Heywood, B. R., Mann, S., King, J. W., Donaghay, P. L., and Hanson, A. K. (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Applied and Environmental Microbiology, 61, 3232-3239.
Beal, J. H. L., Etchegoin, P. G., and Tilley, R. D. (2012) Synthesis and characterisation of magnetic iron sulfide nanocrystals. Journal of Solid State Chemistry, 189, 57-62.
Bourdoiseau, J.-A., Jeannin, M., Remazeilles, C., Sabot, R., and Refait, P. (2011) The transformation of mackinawite into greigite studied by Raman spectroscopy. Journal of Raman Spectroscopy, 42, 496-504.
Butler, E. A., Peters, D. G., and Swift, E. H. (1958) Hydrolysis reactions of thioacetamide in aqueous solutions. Analytical Chemistry, 30, 1379-1383.
Cahill, C. L., Benning, L. G., Barnes, H. L., and Parise, J. B. (2000) In situ time-resolved X-ray diffraction of iron sulfides during hydrothermal pyrite growth. Chemical Geology, 167, 53-63.
Callister, W. D., Jr. (2007) Materials science and engineering: an introduction. John Wiley & Sons, Inc.
Chang, L., Roberts, A. P., Tang, Y., Rainford, B. D., Muxworthy, A. R., and Chen, Q. (2008) Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). Journal of Geophysical Research, 113, B06104.
Chang, Y. S., Savitha, S., Sadhasivam, S., Hsu, C. K., and Lin, F. H. (2011) Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. Journal of Colloid and Interface Science, 363, 314-319.
Chen, X., Zhang, X., Wan, J., Wang, Z., and Qian, Y. (2005) Selective fabrication of metastable greigite (Fe3S4) nanocrystallites and its magnetic properties through a simple solution-based route. Chemical Physics Letters, 403, 396-399.
Churchman, G. J., Fitzpatrick, R. W., and Eggleton, R. A. (1995) Clays: controlling the environment, CSIRO Publishing.
Clark, D. A. (1984) Hysteresis properties of sized dispersed monoclinic pyrrhotite grains. Geophysical Research Letters, 11, 173-176.
Coey, J. M. D., Spender, M. R., and Morrish, A. H. (1970) The magnetic structure of the spinel, Fe3S4. Solid State Communications, 8, 1605-1608.
Csákberényi-Malasics, D., Rodriguez-Blanco, J. D., Kovács-Kis, V., Rečnik, A., Benning, L. G., and Pósfai, M. (2012) Structural properties and transformations of precipitated FeS. Chemical Geology, 294-295, 249-258.
Day, R., Fuller, M., and Schmidt, V. A. (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13, 260-267.
Dekkers, M. J. (1988) Magnetic properties of natural pyrrhotite Part I: Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework. Physics of the Earth and Planetary Interiors, 52, 376-393.
Dekkers, M. J. (1989) Magnetic properties of natural pyrrhotite. II: High- and low-temperature behavior of Jrs and TRM as function of grain size. Physics of the Earth and Planetary Interiors, 57, 266-283.
Dekkers, M. J., and Schoonen, M. A. A. (1994) An electrokinetic study of synthetic greigite and pyrrhotite. Geochimica et Cosmochimica Acta, 58, 4147-4153.
Dekkers, M. J., and Schoonen, M. A. A. (1996) Magnetic properties of hydrothermally synthesized greigite (Fe3S4)-rock magnetic parameters at room temperature. Geophysical Journal International, 126, 360-368.
Devey, A. J. (2009) Computer modelling studies of mackinawite, greigite and cubic FeS. Doctoral dissertation, University College London.
Dulski, T. R. (1996) A manual for the chemical analysis of metals. ASTM International.
Dunlop, D. J. (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107, 10.1029/2001JB000486.
Erd, R. C., Evans, H. T., Jr., and Richter, D. H. (1957) Smythite, a new iron sulfide and associated pyrrhotite from Indiana. American Mineralogist, 42, 309-333.
Evans, H. T., Berner, R. A., and Milton, C. (1962) Valleriite and mackinawite. Geological Society of America, Annual Meeting, 47A p.
Evans, H. T., Milton, C., Chao, E. C. T., Adler, I., Mead, C., Ingram, B., and Berner, R. A. (1964) Valleriite and the new iron sulfide, mackinawite. U.S. Geological Survey Professional Paper, 475-D, 64-69.
Faivre, D. (2016) Iron oxides: From nature to applications. Wiley-VCH.
Farina, M., Esquivel, D. M. S., and Lins de Barros, H. G. P. (1990) Magnetic iron‐sulphur crystals from a magnetotactic microorganism. Nature, 343, 256-258.
Feng, M., Lu, Y., Yang, Y., Zhang, M., Xu, Y. J., Gao, H. L., Dong, L., Xu, W. P., and Yu, S. H. (2013) Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications. Scientific Reports, 3, 2994-2999.
Fleet, M. E. (1982) Synthetic Smythite and Monoclinic Fe3S4. Physics and Chemistry of Minerals, 8, 241-246.
Frankel, R. B., and Bazylinski, D. A. (2003) Biologically induced mineralization by bacteria. Reviews in Mineralogy and Geochemistry, 54, 95-114.
Furukawa, Y., and Barnes, H. L. (1996) Reactions forming smythite, Fe9S11. Geochimica et Cosmochimica Acta, 60, 3581-3591.
Gao, S., Huang, F., Song, D., Li, G., Liu, Q., Feng, T., Zhao, R., Liu, J., and Gao, W. (2015) Growth mechanism and stability study on the Fe3S4 nanocrystals synthesized under thermal and humid conditions. Proceedings of the 11th International Congress for Applied Mineralogy, Springer Geochemistry/ Mineralogy.
Gong, M. G., Kirkeminde, A., Xie, Y., Lu, R., Liu, J., Wu, J. Z., and Ren, S. (2013) Iron pyrite (FeS2) broad spectral and magnetically responsive photodetectors. Advanced Optical Materials, 1, 78-83.
Gupta, P. R. (1965) Pyrrhotite geothermometry and its application to the sulfide ores of the Mosabani Mines, Singhbhum, Bihar, India. Economic Geology, 60, 175-180.
Harrison, R. J., and Feinberg, J. M. (2008) FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry Geophysics Geosystems, 9(5).
He, Z. B., Yu, S. H., Zhou, X. Y., Li, X. G., and Qu, J. F. (2006) Magnetic-field-induced phase-selective synthesis of ferrosulfide microrods by a hydrothermal process: Microstructure control and magnetic properties. Advanced Functional Materials, 16, 1105-1111.
Heslop, D., and Muxworthy, A. R. (2005) Aspects of calculating first-order reversal curve distributions. . Journal of Magnetism and Magnetic Materials, 288, 155-167.
Heywood, B. R., Bazylinski, D. A., Garratt-Reed, A., Mann, S., and Frankel, R. B. (1990) Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften, 77, 536-538.
Hoffmann, V. (1992) Greigite (Fe3S4): magnetic properties and first domain observations. Physics of the Earth and Planetary Interiors, 70, 288-301.
Holmes, J. (1999) Fate of incorporated metals during mackinawite oxidation in sea water. Applied Geochemistry, 14, 277-281.
Hunger, S., and Benning, L. G. (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochemical Transactions, 8(1), 1-20.
Jeong, H. Y., Lee, J. H., and Hayes, K. F. (2008) Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area. Geochimica et Cosmochimica Acta, 72, 493-505.
Kang, Y. S., Risbud, S., Rabolt, J. F., and Stroeve, P. S. (1996) Synthesis and Characterization of Nanometer-Size Fe3O4 and r-Fe2O3 Particles. Chemistry of Materials, 8, 2209-2211.
Kao, S. J., Horng, C.-S., Roberts, A. P., and Liu, K. K. (2004) Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology, 203, 153-168.
Kasama, T., Pósfai, M., Chong, P. K. K., Finlayson, A. P., Buseck, P. R., Frankel, R. B., and Dunin, R. E. (2006) Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. American Mineralogist, 91, 1216-1229.
Kontny, A., Wall, H. D., Sharp, T. G., Posfai, M. (2000) Mineralogy and magnetic behavior of pyrrhotite from a 260°C section at the KTB drilling site, Germany. American Mineralogist, 85, 1416-1427.
Krupp, R. E. (1994) Phase relations and phase transformations between the low-temperature iron sulfides mackinawite, greigite, and smythite. European Journal of Mineralogy, 6, 265-278.
Lennie, A. R., Redfern, S. A. T., Champness, P. E., Stoddart, C. P., Schofield, P. F., and Vaughan, D. J. (1997) Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study. American Mineralogist, 82, 302-309.
Lennie, A. R., Redfern, S. A. T., Schofield, P. F., and Vaughan, D. J. (1995) Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineralogical Magazine, 59, 677-683.
Letard, I., Sainctavit, P., Menguy, N., Valet, J.-P., Isambert, A., Dekkers, M., and Gloter, A. (2005) Mineralogy of greigite Fe3S4. Physica Scripta, T115, 489-491.
Li, F. (1996) Studies of structures and phase transitions in pyrrhotite. Iowa state university.
Li, T., Li, H., Wu, Z., Hao, H., Liu, J., Huang, T., Sun, H., Zhang, J., Zhang, H., and Guo, Z. (2015) Colloidal synthesis of greigite nanoplates with controlled lateral size for electrochemical applications. Nanoscale, 7, 4171.
Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A., and Jannasch, H. W. (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343, 258-261.
Mayergoyz, L. D. (1986) Mathematical models of hysteresis. IEEE Transactions on Magnetics, 22(5), 603-608.
Morimoto, N., Gyobu, A., Mukaiyama, H., and Izawa, E. (1975) Crystallography and stability of pyrrhotites. Economic Geology, 70, 824-833.
Mullet, M., Boursiquot, S., and Ehrhardt, J. J. (2004) Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids and Surfaces A, 244, 77-85.
Nekrasov, I. J., and Besmen, N. I. (1979) Pyrite-pyrrhotite geothermometer. Distribution of cobalt, nickel and tin. Physics and Chemistry of the Earth, 11, 767-771.
O'Reilly, W., Hoffmann, V., Chouker, A. C., Soffel, H. C., and Menyeh, A. (2000) Magnetic properties of synthetic analogues of pyrrhotite ore in the grain size range 1-24 μm. Geophysical Journal International, 142, 669-683.
Pósfai, M., Cziner, K., Márton, E., Márton, P., Buseck, P. R., Frankel, R. B., and Bazylinski, D. A. (2001) Crystal‐size distributions and possible biogenic origin of Fe sulfides. European Journal of Mineralogy, 13, 691-703.
Paolella, A., George, C., Povia, M., Zhang, Y., Krahne, R., Gich, M., Genovese, A., Falqui, A., Longobardi, M., Guardia, P., Pellegrino, T., and Manna, L. (2011) Charge transport and electrochemical properties of colloidal greigite (Fe3S4) nanoplatelets. Chemistry of Materials, 23, 3762-3768.
Parry, L. G. (1982) Magnetization of immobilized particle dispersions with two distinct particle sizes. Physics of the Earth and Planetary Interiors, 28, 230-241.
Qin, H. F., Liu, Q. S., and Pan, Y. X. (2008) The first-order reversal curve (FORC) diagram: Theory and case study. Chinese Journal of Geophysics, 51(3), 713-751.
Rickard, D., and Luther, G. W. (2007) Chemistry of iron sulfides. Chemical Reviews, 107, 514-562.
Rickard, D. T. (1968) Synthesis of smythite - rhombohedral F3S4. Nature, 218, 356-357.
Roberts, A. P., and Weaver, R. (2005) Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 231, 263-277.
Schoonen, M. A. A., and Barnes, H. L. (1991) Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes. Geochimica et Cosmochimica Acta, 55, 3491-3504.
Schwarz, E. J., Vaughan, D. J. (1972) Magnetic phase relations of pyrrhotite. Journal of Geomagnetism and Geoelectricity, 24, 441-458.
Sines, I. T., Vaughn, D. D. I., Misra, R., Popczun, E. J., and Schaak, R. E. (2012) Synthesis of tetragonal mackinawite-type FeS nanosheets by solvothermal crystallization. Journal of Solid State Chemistry, 196, 17-20.
Skinner, B. J., Erd, R. C., and Grimaldi, F. S. (1964) Greigite, the thio-spinel of iron; a new mineral. American Mineralogist, 49(543-555).
Soffel, H. C. (1977) Pseudo-single-domain effects and single-domain multidomain transition in natural pyrrhotite deduced from domain structure observations. Journal of Geophysical Research, 42, 351-359.
Spender, M. R., Coey, J. M. D., and Morrish, A. H. (1972) The magnetic properties and Mössbauer spectra of synthetic samples of Fe3S4. Canadian Journal of Physics, 50, 2313-2326.
Stanjek, H., Fassbinder, J. W. E., Vali, H., Wägele, H., and Graf, W. (1994) Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil. European Journal of Soil Science, 45, 97-103.
Stanjek, H., and Murad, E. (1994) Comparison of pedogenic and sedimentary greigite by X‐ray diffraction and Mössbauer spectroscopy. Clays and Clay Minerals, 42, 451-454.
Taylor, L. A. (1970) Smythite, Fe3+xS4, and associated minerals from the Silverfields mine, Cobalt, Ontario. American Mineralogist, 55, 1650-1658.
Taylor, L. A., and Williams, K. L. (1972) Smythite (Fe, Ni)9S11 - a redefinition. American Mineralogist, 57, 1571-1577.
Tuttle, M. L. (1973) Geochemical, Biogeochemical, and Sedimentological Studies of the Green River Formation, Wyoming, Utah, and Colorado. U.S. Geological Survey Bulletin.
Uda, M. (1965) On the synthesis of greigite. American Mineralogist, 50, 1487-1489.
Watson, J. H. P., Ellwood, D. C., Deng, Q., Mikhalovsky, S., Hayter, C. E., and Evans, J. (1995) Heavy metal adsorption on bacterially produced FeS. Minerals Engineering, 8, 1097-1108.
White, L. M., Bhartia, R., Stucky, G. D., Kanik, I., and Russell, M. J. (2015) Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life. Earth and Planetary Science Letters, 430, 105-114.
Wolthers, M., Charlet, L., van Der Weijden, C. H., van der Linde, P. R., and Rickard, D. (2005) Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochimica et Cosmochimica Acta, 69, 3483-3492.
Wyatt, O. H., and Dew-Hughes, D. (1974) Metals, Ceramics, and Polymers. Cambridge University Press.
Wyckoff, R. W. G. (1963) Crystal Structures. New York : Interscience Publishers, 1.
Xin, C. A. I., Xue, Z. H. A. O., and Hongqi, Y. A. O. (2004) Spontaneous combustion tendency of iron sulfide corrosion: oxidation characterization and thermostability. Procedia Engineering, 84, 356-362.
Yuan, B., Fu, H., and Luan, W. (2012) One-step Synthesis of Fe3S4 Micro-crystals and its Facile Transformation to Fe7S8 Micro-crystals. Applied Mechanics and Materials, 130-134, 1270-1275.
Zhang, Z. J., and Chen, X. Y. (2009) Magnetic greigite (Fe3S4) nanomaterials: Shape-controlled solvothermal synthesis and their calcination conversion into hematite (a-Fe2O3) nanomaterials. Journal of Alloys and Compounds, 488, 339-345.
吳宗峰 (2007) 氧化鐵奈米粒子之合成鑑定與磁性質. 國立清華大學材料科學工程研究所碩士論文。
吳思翰 (2004) 金屬及金屬核殼複合奈米粒之製備,國立成功大學化學工程學系博士論文。
吳柏憲 (2016) 以DFT方法計算鋰離子電池中微孔隔離膜(PP/PE/PP)之晶格擴張行為,國立成功大學材料科學及工程學系碩士論文。
李一憲 (2014) 利用一階迴轉曲線及磁圓偏振光譜針對L10-FePt/Ni雙層膜翻轉行為之探討,國立交通大學材料科學與工程學系碩士論文。
侯朝振 (2008) 利用磁力探針顯微鏡測量 Zn1-XCoXO 奈米線的居禮溫度,國立交通大學電子物理研究所碩士論文。
校內:2022-08-31公開