簡易檢索 / 詳目顯示

研究生: 邱威碩
Chiu, Wei-Shuo
論文名稱: 精細金銀合金與純金導線通電疲勞及耐蝕性研究
A Study of current fatigue and anti corrosion of fine Au-Ag alloy and Au wires
指導教授: 洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 86
中文關鍵詞: 金銀合金通電硫化氯化打線接合
外文關鍵詞: Au-Ag alloy wire, Au wire, IMC
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在早期封裝產業中,金線為常使用之封裝線材,然而近年金線價格大幅上升,各界便開始尋求其他替代材料,目前常用的替代材料為銀線和銅線;由於封裝膠中所含的硫原子以及氯離子在長時間接觸下會使銀線和銅線材明顯產生腐蝕劣化問題。為達到降低價格與抗腐蝕劣化的效果,合金線材的應用是另一選擇,因此,本研究將進行金銀合金線材可靠度研究。
    本研究金銀合金線材比對商用純金線材在性質上的差異,金銀合金線材之金銀兩元素可依照任意比例形成固溶體,若是提高銀元素比例,可以有效控制成本。另外純金線材在打線應用過程中會明顯產生介金金屬化合物,導致元件電阻上升甚至故障。銀元素的添加則可以有效降低金元素的擴散,進而減低介金屬化合物形成。研究過程中將針對線材機械性質與通電性質進行討論,並導入硫化試驗與氯化試驗來評估線材對硫化與氯化腐蝕後的耐受性差異。
    機械性質方面,由於金線材抽製與退火製程後形成較細晶粒結構
    ,因此在細晶粒尺寸效應下,純金線材有較優異拉伸性質與硬度。通電性質部分,合金線材所呈現的電阻均高於純金線材,理由為合金化原因導致線材電阻上升,然而降低導線長度可發現金銀合金線材電阻可接近純金線材,這是因為線材長度縮短後電子移動距離下降,進而推論在封裝中合金線材會與純金線材有相似的電阻值。
    進行硫化測試後,合金線材表面會形成硫化銀顆粒組織,導致金銀合金線材電阻上升趨勢明顯高於純金線材,使得通電疲勞壽命下降
    ;在短時間硫化後,內部硫化較為緩和,因此後合金線材仍保有一定的拉伸性質。
    綜合打線結果,第一銲點部分,長時間通電後,合金線材所形成介金屬化合物厚度明顯薄於純金線材,使得合金線材可與純金線材有相接近的界面阻抗。第二銲點部分,在較低電阻且僅有少量介金屬化合物生成下,合金線材的通電循環壽命劣化率沒有增加,並且在氯化試驗後,機械性質與電阻上升是因為線材接合基板處有腐蝕現象導致第二銲點性質下降。合金線材部分性質是等同於純金線材,應可考量導入封裝應用。

    SUMMARY
    In this study, we found the ability of anti-chemical resistance of Au-Ag alloy wire with low sulfur diffusion is good. The Au wire after higher sulfur diffusion, the electrical properties has deteriorated significantly. For the first bond, the rate of IMC formation of Au-Ag alloy wire was slower than Au wire. The mechanical and electrical properties of the second bond after chlorination were deteriorated due to the corrosion in the Al pad. According to the results of this study, the potentiality of Au-Ag alloy wire could replace Au wire in some applied areas.

    中文摘要I 英文摘要III 致謝XVII 目錄 XVIII 表目錄XXI 圖目錄XXII 第一章 前言1 第二章 文獻回顧3 2-1打線接合3 2-1-1接合型式3 2-1-2接合技術5 2-2放電結球6 2-2-1結球氣氛條件7 2-2-2結球後微觀組織7 2-3影響接合強度之因子8 2-4導線材料9 2-4-1鋁導線10 2-4-2銅基導線11 2-4-3銀基導線11 2-4-4金導線12 2-4-5金銀合金導線13 2-5 硫化試驗14 2-6氯化試驗15 2-7通電試驗15 2-8電熱效應促進介金屬化合物生長16 2-9拉伸性質16 2-10接合界面破壞機制16 2-11研究目的17 第三章 實驗步驟與方法20 3-1實驗材料20 3-2放電結球與打線接合21 3-3微結構與表面形貌觀察21 3-3-1微硬度測試22 3-4拉伸試驗22 3-4-1線材拉伸試驗22 3-4-2打線接合拉伸試驗22 3-5 I-V曲線電性量測23 3-5-1線材I-V曲線電性量測23 3-5-2打線接合I-V曲線電性量測23 3-6通電循環試驗24 3-6-1線材通電循環試驗24 3-6-2打線接合通電循環試驗24 3-7耐蝕性試驗24 3-7-1線材硫化試驗25 3-7-2第一銲點硫化試驗25 3-7-3第二銲點氯化試驗26 第四章 結果與討論33 4-1金銀合金導線與純金導線微觀組織特性33 4-2線材拉伸性質探討33 4-2-1線材拉伸性質試驗33 4-2-2硫化對線材拉伸性質探討34 4-3線材電性分析35 4-3-1線材I-V曲線分析35 4-3-2硫化對線材通電循環之影響36 4-3-3線材通電循環疲勞劣化機制37 4-4打線接合可靠度探討37 4-4-1放電結球微觀組織特性37 4-4-2第一銲點接合強度分析38 4-4-3第一銲點接合電性分析38 4-4-4 硫化對第一銲點接合電性之影響40 4-4-5第二銲點接合強度分析41 4-4-6第二銲點接合電性分析42 4-4-7氯化對第二銲點接合電性分析42 4-5金銀合金導線封裝應用性評估43 第五章 結論79 參考文獻81 表目錄 表2-1 常見導線材料性質比較18 表4-1 第二銲點氯化前後電阻差異45 表4-2 線材通電性質比較45 圖目錄 圖2-1 金銀合金二元相圖19 圖3-1 實驗流程圖27 圖3 2 放電結球與打線接合示意圖28 圖3-3 線材HK微硬度試驗示意圖29 圖3-4 線材拉伸試驗示意圖30 圖3-5 第一銲點拉伸試驗示意圖31 圖3-6 接合通電示意圖32 圖4-1 線材微觀組織:(a) 60 Au (b) 4N Au46 圖4-2 線材拉伸性質:(a) 抗拉強度(b) 延伸率47 圖4-3 線材HK微硬度48 圖4-4 氣態硫化 (VS)線材表面形貌特徵:(a) 60 Au (b) 4N Au49 圖4-5 氣態硫化後線材拉伸性質:(a)抗拉強度 (b) 延伸率50 圖4-6 液態硫化 (LS)線材表面形貌特徵:(a) 60 Au (b) 4N Au51 圖4-7 液態硫化後線材拉伸性質:(a) 抗拉強度 (b) 延伸率52 圖4-8 不同線長所測量之I-V曲線:(a) 3 cm (b) 5 cm (c) 7 cm53 圖4-9 不同氣態硫化時間之I-V曲線:(a) 1 hr (b) 4 hr54 圖4-10 不同液態硫化時間之I-V曲線:(a) 1 hr (b) 4 hr55 圖4-11 氣態硫化後線材通電循環測試:(a) 60 Au (b) 4N Au56 圖4-12 液態硫化後線材通電循環測試:(a) 60 Au (b) 4N Au57 圖4-13 硫化處理後60 Au線材內部硫元素Mapping:(a) 氣態硫化 (b) 液態硫化58 圖4-14 硫化處理後4N Au線材內部硫元素Mapping:(a) 氣態硫化(b) 液態硫化59 圖4-15 硫化處理後60 Au線材表面硫化層厚度:(a) 氣態硫化 (b) 液態硫化60 圖4-16 線材氣態硫化4小時後通電循環微結構:(a) 60 Au (b) 4N Au61 圖4-17 線材硫化後通電失效機制62 圖4-18 導線放電結球外觀:(a) 60 Au (b) 4N Au63 圖4-19 導線放電結球微觀組織:(a) 60 Au (b) 4N Au64 圖4-20 線材第一銲點拉伸性質65 圖4-21 第一銲點不同通電方向I-V曲線:(a) W-P (b) P-W66 圖4-22 第一銲點不同通電方向的通電循環測試:(a) 60 Au (b) 4N Au67 圖4-23 第一銲點長時間通電循環介金屬化合物形成特徵:(a) 60 Au (b) 4N Au68 圖4-24 第一銲點長時間通電循環介金屬化合物形成機制69 圖4-25 第一銲點氣態硫化W-P通電方向I-V曲線:(a) 1 hr (b) 4 hr70 圖4-26 第一銲點氣態硫化W-P通電方向通電循環測試:(a) 60 Au (b) 4N Au71 圖4-27 第二銲點拉伸性質72 圖4-28 第二銲點氯化後形貌特徵73 圖4-29 第二銲點氯化後失效機制74 圖4-30 第二銲點通電I-V曲線75 圖4-31 第二銲點通電循環測試:(a) 60 Au (b) 4N Au76 圖4-32 第二銲點氯化W-P通電方向I-V曲線77 圖4-33 第二銲點氯化W-P通電方向通電循環測試:(a) 60 Au (b)4N Au78

    [1] G. G. Harman, Wire Bonding in Microelectronics, 3rd ed. McGraw-Hill, 2010.

    [2] Y. H. Tian, C. Q. Wang, I. Lum, M. Mayer, J. P. Jung and Y. Zhou, "Investigation of Ultrasonic Copper Wire Wedge Bonding on Au/Ni Plated Cu Substrates at Ambient Temperature", Journal of Materials Processing Technology, 208(1), pp. 179-186, 2008.

    [3] J. L. Chen and Y. C. Lin, "A New Approach in Free Air Ball Formation Process Parameters Analysis", IEEE Transactions on Electronics Packaging Manufacturing, 23(2), pp. 116-122, 2000.

    [4] H. K. Charles, "Advanced Wire Bonding Technology: Materials, Methods, and Testing". In D. Lu, C. Wong (eds) Materials for Advanced Packaging, pp.131-198, Springer, Cham, 2017.

    [5] J. Krzanowski and N. Murdeshwar, "Deformation and Bonding Processes in Aluminum Ultrasonic Wire Wedge Bonding", Journal of Electronic Materials, 19(9), pp. 919-928, 1990.

    [6] I. Qin, A. Shah, C. Huynh and M. Meyer, "Effect of Process Parameters on Pad Damage during Au and Cu Ball Bonding Processes", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 573-578, 2009.

    [7] B. Langenecker, "Effects of Ultrasound on Deformation Characteristics of Metals", IEEE Transactions on Sonics and Ultrasonics, 13(1), pp. 1-8, 1966.

    [8] S. Murali, N. Srikanth, Y. M. Wong and C. J. Vath, "Fundamentals of Thermo-sonic Copper Wire Bonding in Microelectronics Packaging", Journal of Materials Science, 42(2), pp. 615-623, 2007.

    [9] H. Zhang, F. Wang, D. Zhang, L. Wang, Y. Hou, T. Xi, "A new automatic resonance frequency tracking method for piezoelectric ultrasonic transducers used in thermosonic wire bonding", Sensors and Actuators A: Physical, 235, pp. 140-150, 2015.

    [10] P. Liu, Li. Tong, J. Wang, L. Shi, H. Tang, "Challenges and Developments of Copper Wire Bonding Technology", Microelectronics Reliability, 52( 6), pp. 1092-1098, 2012.

    [11] S. Kaimori, T. Nonaka and A. Mizoguchi, "The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating", IEEE Transactions on Advanced Packaging, 29(2), pp. 227-231, 2006.

    [12] A. Pequegnat, H. J. Kim, M. Mayer, Y. Zhou, J. Persic and J. T. Moon, "Effect of Gas Type and Flow Rate on Cu Free Air Ball Formation in Thermosonic Wire Bonding", Microelectronics Reliability, 51, pp. 43-52, 2011.

    [13] S. Kumar, H. Kwon, Y. I. Heo, S. H. Kim, J. S. Hwang and J. T. Moon, "Thermosonic Ball Bonding Behavior and Reliability Study of Ag Alloy Wire," Electronic Packaging Technology Conference (EPTC) on IEEE, pp. 254-259, 2013.

    [14] P. S. Chauhan, A. Choubey, Z. Zhong, M. G. Pecht. Copper Wire Bonding, Springer, pp. 39-40, 2014.

    [15] 林宜璋,不同退火條件之銅導線經放電結球前後之機械性質與織構分析,國立成功大學材料科學與工程系碩士論文,民國九十六年。

    [16] 鄭傑勻,濺鍍金之銅導線成球性及打線接合可靠度研究,成功大學材料科學及工程學系碩士論文,民國一百零四年七月。

    [17] Z. W. Zhong, "Overview of wire bonding using copper wire or insulated wire", Microelectronics Reliability, 51, pp. 4-12, 2011.

    [18] C. J. Hang, W. H. Song, I. Lum, M. Mayer, Y. Zhou, C. Q. Wang, J. T. Moon and J. Persic, "Effect of Electronic Flame Off Parameters on Copper Bonding Wire: Free-Air Ball Deformability, Heat Affected Zone Length, Heat Affected Zone Breaking Force", Microelectronic Engineering, 86, pp. 2094-2103, 2009.

    [19] A.B.Y. Lim, A.C.K. Chang, O. Yauw, B. Chylak, C.L. Gan, Z.Chen, "Ultra-fine pitch palladium-coated copper wire bonding: Effect of bonding parameters", Microelectronics Reliability, 54(11), pp. 2555-2563, 2014.

    [20] G. Hu, "Comparison of copper, silver and gold wire bonding on interconnect metallization", 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, pp. 529-533, 2012.

    [21] 朱冠銘,具奈米鍍鋅層精細鋁矽導線之放電成球機制及打線接合可靠度研究,成功大學材料科學及工程學系學位論文,民國一百零五年。

    [22] H. Xu, C. Liu, V. V. Silberschmidtb, S. S. Pramanac, T. J. White, Z. Chen, and V. L. Acoff, "Intermetallic Phase Transformations in Au-Al Wire Bonds", Intermetallics, 19, pp. 1808-1816, 2011.

    [23] C. D. Breach and F. Wulff, "New Observations on Intermetallic Compound Formation in Gold Ball Bonds: General Growth Patterns and Identification of Two Forms of Au4Al", Microelectronics Reliability, 44, pp. 973-981, 2004.

    [24] M. Guerdane, "Self-Diffusion in Intermetallic Au4Al: Molecular Dynamics Study Down to Temperatures Relevant to Wire Bonding", Computational Materials Science, 29, pp. 13-23, 2017.

    [25] Y. C. Jang, S. Park, H. D. Kim, Y. C. Ko, K. W. Koo, M. R. Choi, H. G. Kim, N. K. Cho, I.T. Kang, J. H. Yee, and S. H. Lim, "Study of intermetallic compound growth and failure mechanisms in long term reliability of silver bonding wire", 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, pp. 704-708, 2014.

    [26] Y. H. Wu, F. Y. Hung, T. S. Lui and L. H. Chen, " Study of wire bonding reliability of Ag-Pd-Au alloy wire with flash-gold after chlorination and sulfidation", Microelectronics Reliability, 99, pp. 186-196, 2019.

    [27] H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen and K. J. Chen, "Intermetallic Phase on the Interface of Ag-Au-Pd/Al Structure", Advances in Materials Science and Engineering, 2014.

    [28] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho and J. T. Moon, "Reliability Study of Low Cost Alternative Ag bonding Wire with Various Bond Pad Materials", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 851-857, 2009.

    [29] E. Sancaktar, P. Rajput and A. Khanolkar, "Correlation of Silver Migration to the Pull Out Strength of Silver Wire Embedded in an Adhesive Matrix", IEEE Transactions on Components and Packaging Technologies, 28(4), pp. 771-780, 2005.

    [30] N. Srikanth, J. Premkumar, M. Sivakumar, Y. M. Wong and C. J. Vath, "Effect of Wire Purity on Copper Wire Bonding", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 755-759, 2007.

    [31] Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, B. H. Toh, and J. Tan, "Study of Factors Affecting the Hardness of Ball Bonds in Copper Wire Bonding", Microelectronic Engineering, 84(2), pp. 368-374, 2007.

    [32] P. Chauhan, Z.W. Zhong, and M. Pecht, "Copper Wire Bonding Concerns and Best Practices", Journal of Electronic Materials, 42(8), pp. 2415-2434, 2013.

    [33] C. Lu, "The Challenges of Copper Wire Bonding", International Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT) on IEEE, pp. 1-4, 2010.

    [34] 張哲豪,鍍金鈀層精細銅導線氯化及通電破壞機制研究,成功大學材料科學及工程學系碩士論文,民國一百零九年。

    [35] D. A. Scott, Metallography and Microstructure of Ancient and Historic Metals, Marina del Rey, 1991.

    [36] P. R. Subramanian and D. E. Laughlin, " Cu-Pd (Copper-Palladium) ", Journal of Phase Equilibria, 12(2), pp. 231–243, 1991.

    [37] H. W. Hsueh, F. Y. Hung and T. S. Lui, "A Study on Electromigration-Inducing Intergranular Fracture of Fine Silver Alloy Wires", Applied Physics Letters, 110, 031902, 2017.

    [38] M. Braunovic and N. Alexandrov, "Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current", IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(1), pp. 78-85, 1994.

    [39] 陳眉瑜,Ø20µm Ag-2Pd合金導線放電結球特性及打線接合界面通電效應探討,成功大學材料科學及工程學系碩士論文,民國一百零二年。

    [40] T. H. Yang, Y. M. Lin and F. Y. Ouyang, "Joule-Heating-Induced Damage in Cu-Al Wedge Bonds Under Current Stressing", Journal of Electronic Materials, 43(1), pp. 270-276, 2014.

    [41] T. J. C. Liu, "Joule heating behaviors around through crack emanating from circular hole under electric load", Engineering Fracture Mechanics, 123, pp. 2-20, 2014.

    無法下載圖示 校內:2026-12-30公開
    校外:2026-12-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE