簡易檢索 / 詳目顯示

研究生: 何慶賀
He, He-Qing
論文名稱: 運用不同特徵萃取方法結合支撐向量機於滾珠螺桿傳動系統之故障診斷
Different Feature Extractors for the Fault Diagnosis of Ball Screw Drive System incorporating with Support Vector Machine
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 244
中文關鍵詞: 快速傅立葉碎形分析希爾伯特-黃多尺度熵支撐向量機
外文關鍵詞: Fast Fourier Transform, Fractal analysis, Hilbert-Huang Transform, Multi-scale Entropy, Support Vector Machine
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究量測垂直式滾珠螺桿試驗機之溫度、位移計、振動及扭矩訊號
    來判斷機台運轉之狀況。其中,不同部位的振動訊號分別以快速傅立葉轉
    換、碎形分析、希爾伯特-黃轉換以及多尺度熵方法進行正常潤滑及潤滑
    油脂劣化狀態之特徵萃取。透過快速傅立葉轉換及希爾伯特-黃轉換,發
    現馬達振動頻譜會出現齒輪嚙合頻率,軸承振動頻譜會出現不同元件的
    損傷頻率以及受螺桿振動模態影響的高頻區間,螺帽振動頻譜會出現球
    通頻率,因此針對滾珠螺桿各部位元件在機台運轉時產生的不同特徵頻
    率,其對應之幅值可作為區分潤滑油脂劣化前後之特徵。藉由碎形分析,
    可以得知碎形維度s D 值與訊號的密度有關,高度尺度參數G值與訊號的
    振幅有關,高度尺度參數G值能在特定部位區別潤滑油脂劣化前後之振
    動大小差異。多尺度熵方法可以計算出訊號在多尺度下之熵值,其結果可
    以有效的辨別出潤滑油脂劣化前後之差異。最後將不同方法萃取出不同
    部位之特徵輸入支撐向量機得到正常潤滑及潤滑油脂劣化狀態之分類邊
    界,藉由該邊界能即時反應出機台運作時是否產生潤滑油脂劣化之現象,
    達到機台即時監測及健康診斷的目標。

    This study focuses on measuring the temperature, elongation, vibration and torque signal
    from different components of the ball screw drive system to identify working state. Features
    related to fault type of lubricant degradation are extracted from vibration signals by using
    Fast Fourier Transform, Fractal analysis, Hilbert-Huang Transform and Multi-scale Entropy.
    Through Fast Fourier Transform and Hilbert-Huang Transform, it's clear to show that the
    characteristic frequency of different components can be identified. The spectra of motor
    appear gear meshing frequency, the spectra of bearings appear defect frequency of different
    components and high frequency range which affected by screw vibration mode, the spectra
    of nut appear ball passing frequency. Thus, feature extraction is accomplished by finding
    magnitude corresponding to characteristic frequency. In fractal analysis, there are two
    important parameters called Topothesy and Fractal dimension, expressed as G and s D
    respectively. In the case of monitoring the specific components of Ball screw drive system,
    Topothesy is more significant than Fractal dimension to discriminate the normal-lubrication
    state and lubricant-degradation state. Multi-scale Entropy is used to calculate the entropy in
    multi-scale of signal. At specific scales, the result of Multi-scale Entropy can be used clearly
    to discriminate the normal lubrication state and lubricant degradation state. Finally, the
    decision boundary is able to obtain based on implementation of different extractors via
    Support Vector Machine. Through the decision boundary, it's possible to distinguish the
    working state is lubricant-degradation or not. The goal of online monitoring and diagnosing
    can be achieved.

    摘要 I Extended Abstract II 致謝 VI 目錄 VIII 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 1-1 背景 1 1-2 文獻回顧 2 1-3 研究目的 6 1-4 本文架構 7 第二章 基本理論 8 2-1 數位訊號處理(Digital Signal Processing, DSP) 8 2-1-1 訊號處理簡介 8 2-1-2 取樣定理 9 2-1-3 快速傅立葉轉換(Fast Fourier Transform, FFT) 10 2-1-3-1 傅立葉轉換及離散傅立葉轉換 10 2-1-3-2 快速傅立葉轉換基本理論 12 2-1-3-3 快速傅立葉轉換之處理流程及其限制條件 13 2-1-4 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 14 2-1-4-1 希爾伯特-黃轉換簡介 14 2-1-4-2 瞬時頻率 15 2-1-4-3 本質模態函數(Intrinsic Mode Function, IMF) 17 2-1-4-4 經驗模態分解法(Empirical Mode Decomposition, EMD) 19 2-1-5 特徵頻率 21 2-1-5-1 轉軸頻率 22 2-1-5-2 齒輪振動 22 2-1-5-2-1 振動原理 22 2-1-5-2-2 齒輪嚙合頻率與邊頻帶分析 24 2-1-5-3 滾珠軸承各元件之損傷頻率 27 2-1-5-4 球通頻率 29 2-1-5-5 螺桿振動模態 31 2-1-6 多尺度熵(Multi-scale Entropy, MSE) 32 2-1-6-1 熵簡介 32 2-1-6-2 取樣熵(Sample Entropy, SaEn) 33 2-1-6-3 多尺度熵基本理論 36 2-2 碎形分析(Fractal Analysis, FA) 37 2-2-1 碎形簡介 37 2-2-2 自相似性與自仿射性 38 2-2-3 碎形參數計算 40 2-2-4 碎形區間選擇 43 2-3 支撐向量機(Support Vector Machine, SVM) 44 2-3-1 支撐向量機簡介 44 2-3-2 Hard-Margin SVM 48 2-3-2-1 Dual form 49 2-3-2-2 Non-linear form 53 2-3-2-2-1 Polynomial Kernel 55 2-3-2-2-2 Gaussian Kernel 56 2-3-2-3 General form 57 2-3-3 Soft-Margin SVM 58 2-3-3-1 Dual form 59 2-3-3-2 General form 63 2-3-4 驗證(Validation) 65 2-3-4-1 過度擬合(Overfit) 65 2-3-4-2 交叉驗證(Cross Validation, CV) 66 2-3-4-2-1 Leave-One-Out Cross Validation (LOOCV) 66 2-3-4-2-2 K-fold Cross Validation 67 第三章 實驗方法 91 3-1 實驗設備 91 3-1-1 實驗機台簡介 91 3-1-2 量測儀器簡介 94 3-2 實驗規劃與步驟 96 3-2-1 實驗條件與參數 96 3-2-2 前置作業 97 3-2-3 實驗步驟 98 3-2-4 加速規及扭矩訊號之擷取與處理 99 第四章 結果與討論 108 4-1 各部位之特徵頻率計算結果 108 4-1-1 馬達振動頻譜分析 108 4-1-2 滾珠軸承振動頻譜分析 109 4-1-3 螺帽振動頻譜分析 110 4-2 正常潤滑與潤滑油脂劣化狀態之分類 112 4-2-1 特徵選取 112 4-2-1-1 Fast Fourier Transform (FFT) 113 4-2-1-2 Fractal analysis (FA) 114 4-2-1-3 Hilbert-Huang Transform (HHT) 114 4-2-1-4 Multi-scale Entropy (MSE) 116 4-2-1-5 Torque at constant velocity 118 4-2-2 分類結果 118 4-2-2-1 Fast Fourier Transform (FFT) 118 4-2-2-2 Fractal analysis (FA) 119 4-2-2-3 Hilbert-Huang Transform (HHT) 121 4-2-2-4 Multi-scale Entropy (MSE) 122 4-2-2-5 Torque at constant velocity 123 4-2-3 分類結果討論 124 4-3 垂直式滾珠螺桿試驗機之運動機制分析 127 4-3-1 軸承之運動機制 127 4-3-2 螺帽在預壓力及軸向負荷條件下之運動機制 128 4-4 不同螺帽初始接觸角之比較 129 4-4-1 結果 130 4-5 不同潤滑油脂之比較 131 4-5-1 結果 132 第五章 結論與未來展望 232 5-1 結論 232 5-2 未來展望 235 參考文獻 237

    [1] Tokunaga, Y.;Igarashi, T.;Sugiura, T., “Studies on the sound and vibration of a ball screw : sound characteristics of a ball screw”, Transactions of the Japan Society of Mechanical Engineers, Part C vol.31, No.4, pp.732-738, 1988.
    [2] Tokunaga, Y.;Igarashi, T.;Sugiura, T., “Studies on the soundand vibration of a ball screw”, Transactions of the Japan Society of Mechanical Engineers, Part C, Vol.55, No.520, pp.2945-2950, 1989.
    [3] Yamaguchi, H.;Tsutomu, O, “Development of NSK S1 series ball screws and linear guides”, Motion & Control, NSK Ltd., No.11, pp.27-34, 1996.
    [4] 王建文,“滾珠導螺桿低頻噪音源之鑑別與改善研究”,國立清華大學動力機械工程學系碩士論文,2006。
    [5] Eisenmann, R. C.;Eisenmann Jr, R. C., “Machinery Malfunction Diagnosis and Correction”, Prentice Hall, USA, 1998.
    [6] 葉俊成,“直流馬達與齒輪箱之噪音分析與減量”,國立台灣科技大學機械工程研究所碩士論文,2005。
    [7] Randy, R. S.;Thomas, G. H.;Farrukh, K.;Bartheld, R. G., “Motor bearing damage detection using stator current monitoring”, Industry Applications, IEEE Transactions on, 31.6, pp.1274-1279, 1995.
    [8] 劉家瑋,“馬達動態特性鑑別及故障診斷”,中原大學機械工程學系碩士論文,2002。
    [9] Huang, N. E.;Shen, Z.;Long, S. R.;Wu, M. C.;Shih, H. H.;Zheng, Q.;Yen, N. C.;Tung, C. C.;Liu, H. H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceedings of Royal Society London. A, No. 454, pp.903-995, 1998.
    [10] Yan, R.;Gao, R. X., “Hilbert–Huang transform-based vibration signal analysis for machine health monitoring”, Instrumentation and measurement, IEEE Transactions on, 55.6, pp.2320-2329, 2006.
    [11] Zhang, Y, “Hilbert-Huang transform and marginal spectrum for detection and diagnosis of localized defects in roller bearings”, Journal of Mechanical Science and Technology, 23.2, pp.291-301, 2009.
    [12] 黃國豪,“應用希爾伯特黃變換(HHT)之邊際譜分析於旋轉機械的元件鬆脫故障診斷”,國立中央大學光機電工程研究所碩士論文,2009。
    [13] Lorenz;Edward N., “Deterministic nonperiodic flow” Journalof the Atmospheric Sciences, Vol.20, pp.130-141, 1963.
    [14] Mandelbrot, B.B., “The Fractal Geometry of Nature”, New York, WH Freeman and Co., 495 pp.1, 1983.
    [15] 葛世榮,朱華,“摩擦學的分形”,機械工業出版社,中國,2005。
    [16] Zhou, G.;Leu, M.;Blackmore, D., “Fractal geometry modeling with applications in surface characterisation and wear prediction”, International Journal of Machine Tools and Manufacture, Vol.35, No.2, pp.203-209, 1995.
    [17] Zhu, H.;Ge, S.;Cao, X.;Tang, W., “The changes of fractal dimensions of frictional signals in the running-In wear process”, Wear, Vol.263, pp.1502-1507, 2007.
    [18] 孫毅興,“利用碎形理論建立量測訊號即時監測技術與磨潤行為關聯性之研究”,國立成功大學機械工程學系碩士論文,2010。
    [19] 張閔期,“運用多重碎形理論於滾珠螺桿系統之訊號分析”,國立成功大學機械工程學系碩士論文,2011。
    [20] 黃淳紹,“運用頻譜分析與多重碎形理論於長時間滾珠螺桿系統運轉時訊號分析”,國立成功大學機械工程學系碩士論文,2013。
    [21] 洪梓豪,“頻譜分析與碎形理論運用於滾珠螺桿傳動系統之訊號分析及運轉狀況鑑定”,國立成功大學機械工程學系碩士論文,2014。
    [22] Richman, J. S.;Moorman, J. R., “Physiological time-series analysis using approximate entropy and sample entropy”, American Journal of Physiology-Heart and Circulatory Physiology, 278, pp.H2039-H2049, 2000.
    [23] Costa, M.;Goldberger, A. L.;Peng, C. K., “Multi-scale entropy analysis of complex physiologic time series”, Physical Review Letters, Vol.89, No.6, pp.068102-1-068102-4, 2002.
    [24] Costa, M.;Goldberger, A. L.;Peng, C. K., “Multi-scale entropy analysis of biological signals”, Physical Review E, Vol.71, pp.021906-1-021906-18, 2005.
    [25] 王俊傑,吳求文,吳順德,李易宗,吳豐泰,“多尺度熵在軸承異常監控與診斷之應用”,中國機械工程學會第二十八屆全國學術研討會論文集,2011。
    [26] Yu, D.;Yang, Y.;Cheng, J., “A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM”, Measurement, Vol.40, pp.943–950, 2007.
    [27] 吳求文,王俊傑,吳順德,“基於多尺度熵、區別指標與支持向量機之旋轉機械錯誤診斷系統”,中國機械工程學會第二十八屆全國學術研討會論文集,2011。
    [28] Wang, C.;Lin, W. Y.;Young, H. T., “An intelligent fault diagnosis system for machine tools”, International Journal of Automation and Smart Technology, 4.3, pp.150-156., 2014
    [29] Shannon, C. E., “Communication in the presence of noise”, Proc. Institute of Radio Engineers, Vol.37, No.1, pp.10-21, 1949.
    [30] Nyquist, H., “Certain topics in telegraph transmission theory”, Trans. AIEE, Vol.47, pp.617-644, 1928.
    [31] Malliavin, P.;Letac, G., “傅立葉分析及譜分析”。
    [32] Cooley, J. W.;Tukey, J. W., “An algorithm for the machine calculation of complex fourier series”, Mathematics of Computation, Vol.19, No.90, pp.297-301, 1965.
    [33] 李天龍,“以FFT為架構建立之諧波參數分析”,國立中山大學碩士論文,1999。
    [34] Huang, N. E.;Shen, Z.;Long, S. R.;Wu, M. C.;Shih, H. H.;Zheng, Q.;Liu, H. H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol.454, No.1971, The Royal Society, 1998.
    [35] Cohen, L., “Time-frequency analysis,” Prentice-Hall, New York, 1995.
    [36] Newland, D. E., “An Introduction to Random Vibrations, Spectral and Wavelet Analysis”, John Wiley and Sons, 1993.
    [37] 魏進忠,“單螺帽雙圈滾珠螺桿在預負荷及潤滑作用條件下運動機制與機械性能的理論分析及實驗印證”,國立成功大學機械工程學系博士論文,2003。
    [38] Karnovsky, I. A.;Lebed, O.;Karnovskii, I. A., “Free Vibrations of Beams and Frames”, McGraw-Hill Professional Publishing, 2004.
    [39] Virgin, L. N., “Vibration of Axially Loaded Structures”, Cambridge University Press, 2007.
    [40] Li, H.;Zheng, H.;Tang, L., “Gear fault diagnosis based on order tracking and Hilbert-Huang transform”, IEEE Sixth International Conference on Fuzzy Systems and Knowledge Discovery, pp.468-472, 2009.
    [41] Pincus, S. M., “Approximate entropy as a measure of system complexity”, Proceedings of the National Academy of Sciences, 88.6, pp.2297-2301, 1991
    [42] Dubuc, B.;Quiniou, J. F.;Roques-Carmes, C.;Tricot, C.;Zucker, S. W., “Evaluating the fractal dimension of profiles”, Physical Review A, Vol.39, pp.1500-1512, 1989.
    [43] Berry, M. V.;Lewis, Z. V., “On the Weierstrass - Mandelbort Fractal Function”, Proceedings of Royal Society of London, A370, pp.459-484, 1980.
    [44] Yan, W.;Komvopoulos, K., “Contact analysis of elastic-plastic fractal surfaces”, Journal of Applied Physics, 84(7), pp.3617-3624, 1998.
    [45] Abu-Mostafa, Y. S.;Malik Magdon-Ismail;Hsuan-Tien Lin, “Learning From Data-A short course”, 全華圖書, 2012.
    [46] Wang, L., “Support Vector Machines: Theory and Applications”, 2005
    [47]“TACB系列滾珠螺桿支撐軸承”,興中軸承有限公司。
    [48]“滾珠螺桿技術手冊”,上銀科技股份有限公司,2012。
    [49] Kang, H. G.;Costa, M. D.;Priplata, A. A.;Starobinets, O. V.;Goldberger, A. L.;Peng, C. K.;Lipsitz, L. A., “Frailty and the degradation of complex balance dynamics during a dual-task protocol”, The Journals of Gerontology. Series A, Biological Science and Medical Science, Vol.64, No.12, pp.1304-1311, 2009.
    [50] Bhattacharyya, A.;Chatterjee, A. B.;Manwani, G. L., “Rigidity analysis of re-circulating ball screw nut assembly with a semi-circular thread form”, Annals of the CIRP, Vol.19, No.1, pp.87-93, 1971.
    [51] 藍毓傑,“垂直式滾珠螺桿之螺帽分析與設計”,國立成功大學工程科學系碩士論文,2014。
    [52] Qiu, S.;Zhou, Z.;Dong, J.;Chen, G., "Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils", Journal of Tribology, Vol.123, No.3, pp.441-443, 2001.

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE