簡易檢索 / 詳目顯示

研究生: 曾憲楷
Tseng, Hsien-Kai
論文名稱: MgZnNb4O12 和 MgZnTa4O12 之晶體結構、電子密度分佈和鍵結型態
Crystal Structure, Distribution of Electron Density and Nature of Bonding in MgZnNb4O12 and MgZnTa4O12
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: GSAS電子密度分佈鍵結晶體結構離子半徑與電子數
外文關鍵詞: GSAS, electron density, bonding, crystal structure, ionic radius and electron numbers
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用 GSAS 結構精算軟體以 Rietveld 方法精算以求得晶體結構、電子密度分佈和鍵結型態的關係,並利用結構因子計算離子半徑和電子數的值。首先以 MgO、Pt、SiO2 為樣品觀察電子密度在離子鍵、金屬鍵和共價鍵中的分佈情況,並作為參考,之後再以 BaTiO3 和 BaTiO3+20mol% BNT 為樣品,觀察在少量取代下的電子密度分佈的變化,是否有鍵結發生改變等,最後再以 MgZnNb4O12 和 MgZnTa4O12 樣品為對照,觀察 Ta (離子半徑 0.69 Å) 和 Nb (離子半徑 0.70 Å) 在互相取代之後的晶體結構、電子密度分佈和鍵結的變化,結果顯示,Ta 和 Nb 在互相取代之後,晶體結構卻由MgZnNb4O12 (Orthorhombic) 變為 MgZnTa4O12 (Tetragonal),在計算完離子半徑和電子數目的值後發現 MgZnNb4O12 結構中的 B-Site 和 O 離子的半徑比起在 MgZnTa4O12 結構中還小,推測可能是 Ta 和 O 之間比 Nb和 O 之間的離子性較大又或是 Ta 比起 Nb 的電子數較多導致與周圍 O 離子電子雲的斥力較大從而增加 Ta 和 O 之間的距離,並使結構中 Mg,Zn 和 O 的電子密度受到壓迫導致距離變近,最終導致在 MgZnTa4O12 結構中的 Ta-O八面體和 Mg,Zn-O 八面體與 MgZnNb4O12 結構中的 Nb-O八面體和 Mg,Zn-O 八面體差異過大而使八面體移動,最終使結構產生改變。

    In this study, we use the GSAS software to calculate the crystal structure, distribution of electron density, nature of bonding and the relationship between ionic radius and electron numbers. First of all, we use MgO, Pt and SiO2 be sample and observe the distribution of electron density in ionic bond, metal bond and covalent bond. Second, we use BaTiO3 and BaTiO3+20mol%BNT be sample watching the difference in distribution of electron density and nature of bonding. Third, we use MgZnNb4O12 and MgZnTa4O12 be sample watching the difference after in distribution of electron density and nature of bonding after Ta (ionic radius 0.69 Å) and Nb (ionic radius 0.70 Å) replace each other.
    The results show, when Ta replace Nb, the crystal structure change from Orthorhombic (MgZnNb4O12) to Tetragonal (MgZnTa4O12).After calculated the relationship between ionic radius and electron numbers, we found that the cations and anions in MgZnNb4O12 is smaller than MgZnTa4O12. Speculated that the bonding between Ta and O is more ionic than Nb and O. Another reason, Ta has more electron numbers than Nb, so the repulsion between Ta and O is more than Nb and O. And lead to that the distance between Mg,Zn and O is more close. So the octahedral of Ta and O in MgZnTa4O12 is bigger than the octahedral of Nb and O in MgZnNb4O12; the octahedral of Mg,Zn and O in MgZnTa4O12 is smaller than the octahedral of Mg,Zn and O in MgZnNb4O12. Finally the octahedral move and the structure change.

    中文摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人研究及理論基礎 3 2-1 電子密度學 3 2-2 X 光繞射 5 2-4 化學鍵的定義 11 2-4-1 離子鍵 11 2-4-1-1 離子鍵的鍵結與電子密度分佈 13 2-4-2 共價鍵 16 2-4-3 金屬鍵 16 2-5 鈦酸鋇之晶體結構 17 2-6 AB2O6之晶體結構 20 第三章 實驗方法及分析 23 3-1 起始原料 23 3-1-1 SiO2、MgO、Pt樣品製備 23 3-1-2 BaTiO3 和BT + 20 mol% BNT樣品製備 23 3-1-3 MgZnNb4O12 和 MgZnTa4O12樣品製備 24 3-2 實驗流程 27 3-2-2 GSAS 之 Rietveld method 精算 29 3-2-3 Fourier electron density maps 計算[9] 30 3-2-4 GSAS 之 Structure Factor計算[4] 31 3-2-5 GSAS 檔案之轉換 33 3-3 Diamond 軟體 35 3-4 WinGX 軟體 35 3-5 MCE 軟體 35 3-6 C(R) 之計算 36 第四章 結果與討論 37 4-1 離子鍵、共價鍵和金屬鍵之探討 37 4-1-1 WinGX 之電子密度輪廓圖分析 37 4-1-2 WinGX 之 2D 點陣圖分析 40 4-1-3 MCE 之 3D 電子密度圖分析 43 4-1-4 C(R) 之計算 46 4-2 BaTiO3 和BT+20 mol%BNT 之探討 50 4-2-1 GSAS 之傅立葉電子密度圖分析 50 4-2-2 WinGX 之電子密度圖分析 53 4-2-3 C(R) 之計算 57 4-3 MgZnNb4O12 和 MgZnTa4O12之探討 60 4-3-1 Diamond 之晶體結構分析 60 4-3-2 WinGX 之電子密度輪廓圖分析 63 4-3-3 WinGX 之 2D 點陣圖分析 66 4-3-4 C(R) 之計算與鍵長之探討 69 第五章 結論 75 參考文獻 76 附錄 A 80

    1. Kingery, W.D., Bowen, H.K. & Uhlmann, D.R.(1976), Introduction to ceramics, John Wiley and Sons, New York.
    2. Bergeron, C.G & Risbud, S.H.(1984), Introduction to phase equilibria in ceramics, The American Ceramic Society Inc., Columbus, Ohio.
    3. 林建仲(2003),「添加鈥之鈦酸鋇陶瓷的製備、分析、及介電性質」,國立成功大學資源工程研究所碩士論文。
    4. Larson, A.C. & Von Dreele, R.B.(1994),“General Structure Analysis System (GSAS)”, Los Alamos National Laboratory Report LAUR, PP.86~748.
    5. Coppens, P., Hansen, H.K.(1978), “Electron Population Analysis of Accurate Diffraction Data .6. Testing Aspherical Atom Refinements on Small-Molecule Data Sets”, Acta Cryst., A34, PP.909.
    6. Coppens, P., Hall, M.B.(1982), Electron Distributions and the Chemical bond, Plenum Press, New York.
    7. 王本寧、陳立基、王瑜(2004),「電子密度拓樸學研究化學分子的方法」,物理雙月刊,廿六卷三期,頁 530-536。
    8. 林政延(2011),「金奈米顆粒的二階段熱膨脹現象」,國立中央大學物理學系研究所碩士論文。
    9. 許樹恩、吳泰伯(2006),X 光繞射原理與材料結構,中國材料科學學會。
    10. Israela, S., Saravananb, R., Srinivasanc, N. & Mohanlal, S.K.(2003),“An investigation on the bonding in MgO, CaO, SrO and BaO from the MEM electron density distributions. ”J. Phys. Chem. Solids, 64, PP. 879-886.
    11. Pauling, L.(1960), The Nature of the Chemical Bond, Cornell Univ., USA, 3rd ed.
    12. Moulson, A. J. & Herbert, J. M.(1990), Electroceramics : Materials, Properties, and Applications, Chapman and Hall, New York.
    13. Jaffe, B., Cook, W. R. & Jaffe, H.(1971), Piezoelectric Ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A.
    14. Dufour, L. C., Monty, C. & Ervas, G. P.(1989),“Surface and Interfaces of Ceramic Materials, ”Kuwer Academic, Bosten, PP. 521-533.
    15. Hutton, C.(1958),“NOTES ON TAPIOLITE, WITH SPECIAL REFERENCE TO TAPIOLITE FROM SOUTHERN WESTLAND,” NEW-ZEALAND, Am. Mineral. 43, PP.112-119.
    16. Nickel, E. H., Rowland, J. F. & McAdam, R. C.(1963),“Ixiolite - A Columbite Substructure,”Can. Mineral. 7, PP.390.
    17. Turnock, A. C.(1966),“MN-TA OXIDES - PHASE RELATIONS AT 1200 DEGREES C,”Can. Mineral. 8, PP.461.
    18. Felten, E. J.(1967),“COMPOSITION DEPENDENT ORDER-DISORDER PHENOMENA IN CONB2-XTAXO6 AND NINB2-XTAXO6,”Mater. Res. Bull. 2, PP.13–24.
    19. Wise, M.A. & Cerny, P.(1996),“The crystal chemistry of the tapiolite series.”Can. Mineral., 34, PP.631–647.
    20. Dos Santos, C.A., Zawislak, L. I., Kinast, E. J., Antonietti, V. & Da Cunha, J. B. M.(2001),“Crystal Chemistry and Structure of the Orthorhombic (Fe,Mn)(Ta,Nb)2O6 Family of Compounds.”Braz. J. Phys. vol. 31, no. 4, December.
    21. Tarantino, S. C., Zema, M., Pistorino, M. & Domeneghitti, M. C.(2003), “High-temperature X-ray investigation of natural columbites, ”
    Phys. Chem. Miner. 30, PP.590–598.
    22. Mello, V. D., Zawislak, L. I., Marimon da Cunha, J. B., Kinast, E. J.,
    Soares, J. B. & Dos Santos, C. A.(1999),“Structure and magnetic properties of layered (FexCo1-x)Ta2O6 compounds, ”J. Magn. Magn. Mater. 196–197, PP.846–847.
    23. Kinast, E. J., Zawislak, L. I., Da Cunha, J. B. M., Antonietti, V., De Vasconcellos, M. A. Z. & Dos Santos, C. A.(2002),“Coexistence of Rutile and Trirutile Phases in a Natural Tapiolite Sample,”J. Solid State Chem. 163, PP.218-223.
    24. Zhang, Y.C., Yue, Z.X., Qi, X., Li, B., Gui, Z.L. & Li, L.T.(2004),“Microwave dielectric properties of Zn(Nb1-xTax)2O6 ceramics, ”Mater. Lett. 58, PP.1392–95.
    25. 簡奕光(2012),「BaTiO3-(Bi0.5Na0.5)TiO3 系統之晶體結構、顯微結構、及介電性質之研究」,國立成功大學資源工程研究所碩士論文。
    26. 郭原呈(2012),「MgZn(Nb1-xTax)4O12陶瓷在微波頻段之研究與應用」,國立成功大學電機工程研究所碩士論文。
    27. Scott Belmonte,” Viewing GSAS Fourier Contour Maps in 3rd party programs Using Scott Belmonte's GPL'd FOUE program,” CCP14 Homepage.
    28. Farrugia, L.(2012),“WinGX and ORTEP for Windows: an update,”J. Appl. Cryst. 45, PP.849-854.
    29. Rohlicek, J. & Husak, M.(2007),“MCE2005 - a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules,”J. Appl. Cryst., 40, PP.600-601.
    30. Sasaki, S., Fujino, K., Takéuchi, Y. & Sadanaga, R.(1980),“On the Estimation of Atomic Charges by the X-ray Method for Some Oxides and Silicates,” Acta Cryst. A36, PP.904-915.
    31. Kajfez, D.(1984),“Computed Model Field Distribution for Isolated Dielectric Resonators,”IEEE. Trans. MTT, MTT-32, PP.1609-1616.
    32. Rietveld, H. M.(1967),“Line profiles of neutron powder-diffraction peaks for structure refinement,”Acta. Crystal., 22, PP.151.
    33. Brandenburg, K. & Putz, H.(1999), DIAMOND. Crystal Impact GbR, Bonn, Germany.

    無法下載圖示 校內:2018-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE