簡易檢索 / 詳目顯示

研究生: 謝秋哲
Xie, Qiu-Zhe
論文名稱: 於鋯鈦酸鋇薄膜中嵌入鋁薄膜改善柔性記憶體之阻變特性
Improvement of Resistive Switching Characteristics in BZT Films by Embedding a Thin Al Layer for Flexible Memory
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 電阻式轉換溶膠凝膠鋯鈦酸鋇
外文關鍵詞: resistive switching, sol-gel, barium zirconate titanium
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用溶膠凝膠法製備鋯鈦酸鋇薄膜作為電阻式記憶體之絕緣層材料。在實驗中,藉由金屬鋁做為插入層,作為capping layer,幫助元件的載子傳輸,進一步將元件之Set/Reset電壓控制在3.5V之內,且將元件之阻值比由102提升至105以上,大幅降低了元件整體之消耗功率。除此之外,本次實驗所運用的柔性氧化銦錫/聚對苯二甲酸乙二醇酯(PET)基板,在500次可撓度測試後依然保持良好的雙極性開關行為。在均勻性方面,有鋁作為插入層的元件也表現不俗,而且在耐久度測試上,直流cycle達到了300次以上。
    在實驗中對材料物理性質分析透徹,加以驗證電阻式記憶體元件特性和電阻轉換機制的表現,並且討論未加入金屬摻入層和加入金屬摻入層在鋯鈦酸鋇薄膜的物性和電性機制之差異。

    In this work, a barium zirconate titanate thin film was prepared as the material for the resistive memory insulating layer using a sol-gel method. As a result of using aluminum as a capping layer to assist the carrier transport of the device, the set/reset voltage of the device was controlled within 3.5V, and the on/off ratio of the device was improved from 103 to 105. Furthermore, the power consumption of the device was greatly reduced. In addition, a flexible Indium Tin Oxide / Polyethylene Terephthalate (PET) substrate was used in this work, and the components still maintained complete bipolar switching behavior after 500 deflection tests. In terms of uniformity, the components with aluminum used as a capping layer also performed well. Simultaneously, the DC cycle was achieved more than 300 times in the durability tests.
    The physical properties of the material were thoroughly analyzed to verify the performance of the resistive memory element and the resistance conversion mechanism, and the electrical differences between BZT with and without a capping layer were discussed.

    摘要 I Abstract III 誌謝 V Contents VII Figure Captions XI Table Captions XVI Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Organization of Thesis 4 Chapter 2 Literature Survey 5 2.1 Introduction of non-volatile memory 5 2.2 Promising Next Generation NVMs 6 2.2.1 Magnetic RAM (MRAM) 6 2.2.2 Ferroelectric RAM (FeRAM) 7 2.2.3 Phase Change RAM (PCRAM) 8 2.2.4 Resistive Random-Access RAM (RRAM) 9 2.3 Resistive RAM (RRAM) 11 2.3.1 Resistive switching phenomena 11 2.3.2 Storage media 12 2.3.3 Resistive switching mechanism 14 2.3.4 Carrier conduction mechanism 20 Chapter 3 Experiment 32 3.1 Fabrication equipment 32 3.1.1 Sputtering 32 3.1.2 Spin coater 32 3.1.3 Oven 33 3.1.4 X-ray photoelectron spectroscopy (XPS) 35 3.1.5 Scanning electron microscopy (SEM) 35 3.1.6 Transmission electron microscopy 36 3.2 Electrical analysis equipment 38 3.2.1 Current-voltage (I-V) measurement 38 3.2.2 Retention characteristics 38 3.2.3 Endurance characteristics 38 3.3 The Sol-gel process 38 3.3.1 Experimental materials 39 3.3.2 Solution fabrication 43 3.4 BZT based flexible RRAM device fabrication 45 3.4.1 Substrate cleaning 45 3.4.2 Experimental Procedures for the Al/BZT/ITO/PET structures 46 3.4.3 Experimental Procedures for the Al/BZT/Al/BZT/ITO/PET structures 49 Chapter 4 Results and Discussion 52 4.1 Electrical and Physical Properties of Pure BZT-Based RRAM 52 4.1.1 Resistive switching properties of Al/BZT/ITO/PET 52 4.1.2 Conduction mechanism analysis 53 4.1.3 Endurance 55 4.1.4 Uniformity 56 4.1.5 Material analysis of pure BZT films 57 4.2 The Effect of Embedded Metal in a BZT Thin Film 67 4.2.1 Resistive switching properties of Embedded Al 68 4.2.2 Current mechanism analysis 69 4.2.3 Endurance 71 4.2.4 Uniformity 72 4.2.5 Data retention 73 4.2.6 TEM observation 73 4.3 Comparison 84 4.3.1 BZT-based three-layer structural RRAMs using different substrates 84 4.3.2 Different thicknesses of the embedded Al layer 85 4.3.3 Comparison with other works 85 4.3.4 Resistive switching model 86 Chapter 5 Conclusion and Future Prospects 92 5.1 Conclusions 92 5.2 Future prospects 94 References 95

    [1] S. Mondal, J .L. Her, K. Koyama, and T. Pan, “Resistive switching Behavior in Lu2O3 Thin Film for Advanced Flexible Memory Applications,” Nanoscale Research Letters., 2014, 9:3.
    [2] C. C. Lin, C. T. Su, C. L. Chang, and H. Y. Wu, “Microelectronic Integrated Circuits Using High-Performance Separated Carbon Nanotube Thin-Film Transistors” IEEE TRANSACTIONS ON MAGNETICS, vol. 50, no. 7, July 2014.
    [3] L. Liu, S. Zhang, Y. Luo, G. Yuan, J. Liu, J. Liu, J.Yin, and Z. Liu, “Coexistence of unipolar and bipolar resistive switching in BiFeO3 and Bi0.8Ca0.2FeO3 films,” J. Appl. Phys., vol. 111, pp. 104103, Mar.2012.
    [4] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., vol. 77, no. 1, pp. 139-141, Jul. 2000.
    [5] Y. C. Chang, R. Y. Xue, and Y. H. Wang, “Multilayered Barium Titanate Thin Films by Sol-Gel Method for Nonvolatile Memory Application,” IEEE Trans. Electron Devices, vol. 61, pp. 4090-4097, Dec. 2014.
    [6] R. Ditizio, P. Werbaneth, and J.-G. Zhu, “Cell Shape and Patterning Considerations for Magnetic Random Access Memory (MRAM) Fabrication,” Semiconductor Manufacturing Magazine., Jan. 2014.
    [7] J. Peng, C. Sheng, J. Shi, X. Li, and J. Zhang, “High-k titanium-aluminum oxide dielectric films prepared by inorganic-organic hybrid solution,” Journal of Sol-Gel Science and Technology., vol. 71, pp. 458-463, 2014.
    [8] M. Ritala and M. Leskela, “Aomic layer deposition,” Handbook of thin film materials., vol. 1, pp. 103-159,2001.
    [9] D. S. Lee, Y. H. Sung, I. G. Lee, J. G. Kim, H. Sohn, and D. H. Ko, “Enhanced bipolar resistive switching of HfO2 with a Ti interlayer,” Applied Physics A., vol. 102, pp. 997-1001, Feb. 2011.
    [10] Y. C. Yang, F. Pan, F. Zeng, and M. Liu, “Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: from carrier trapping/detrapping to electrochemical metallization,” Journal of Applied Physics, vol. 106, pp. 123705-1-123705-5, Dec. 2009
    [11] Y. L. Chung, P. Y. Lai, Y. C. Chen, and J. S. Chen, “Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiOx memory device,” ACS Applied Materials & Interfaces., vol. 3, pp. 1918-1924, May. 2011
    [12] T A. de Assis, F. Borondo, R. M. Benito, R. F. S. Andrade, “Field emission properties of fractal surfaces,” Phys. Rev., B 78, 235427
    [13] Peng Zhang, Y. Y. Laua, R. M. Gilgenbach, “Analysis of radio-frequency absorption and electric and magnetic field enhancements due to surface roughness,” Journal of Applied Physics. 105, 114908
    [14] H. Y. Jeong, Y. I. Kim, J. Y. Lee, S. Y. Choi, “A low-temperature-grown TiO2-based device for the flexible stacked RRAM application,” Nanotechnology., 21 (2010) 115203 (6pp)
    [15] Hamilton Carter, “Magnetic RAM Meets the Power Basics,” Low-Power Engineering Community., Sunday, November 24th
    [16] Y. Fujisaki, “Current Status of Nonvolatile Semiconductor Memory Technology,” Jpn. J. Appl. Phys., vol. 49, pp. 100001, 2010.
    [17] K. Srinivas, “Influence of nanoparticles in PZT ferroelectric material properties and their applications to memory devices,” J. Nanosci. Nanotechnol., vol. 2, no. 3, pp. 56-62, 2014.
    [18] Y. J. Song, G. Jeong, I. G. Baek, and J. Choi, “What Lies Ahead for Resistance-Based Memory Technologies?,” IEEE Computer, vol. 46, no. 8, pp. 30-36, Aug. 2013.
    [19] A. Prakash, H. Hwang, “Multilevel Cell Storage and Resistance Variability in Resistive Random Access Memory,” Physical Sciences Reviews., Volume 1, Issue 6, 20160010
    [20] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal–oxide RRAM,” Proc. IEEE, vol. 100, no. 6, Jun. 2012
    [21] X.T. Zhang, Q.X. Yu, Y.P. Yao, and X.G. Li, “Ultrafast resistive switching in SrTiO3:NbSrTiO3:Nb single crystal” Appl. Phys., Lett. 97 (2010) 222117.
    [22] M. Hasan, R. Dong, H. Choi, D. Lee, D.-J. Seong, M. Pyun, and H. Hwang, “Uniform resistive switching with a thin reactive metal interface layer in metal- La0.7Ca0.3MnO3-metal heterostructures” Appl. Phys. Lett.92 (2008) 202102.
    [23] L. Liu, S. Zhang, Y. Luo, G. Yuan, J. Liu, J. Yin, and Z. Liu, J.” Coexistence of unipolar and bipolar resistive switching in BiFeO3 and Bi0.8Ca0.2FeO3 films” Appl. Phys., 111 (2012) 104103.
    [24] J.Y. Son, Y.H. Shin, H. Kim, and H.M.” NiO Resistive Random Access Memory Nanocapacitor Array on Graphene” Jang., ACS Nano 4 (2010) 2655.
    [25] C. T. Antonio, S. John Paul, M.-R. Gilberto, and R. S. Williams, "Sub-nanosecond switching of a tantalum oxide memristor," Nanotechnology., vol. 22, p. 485203, 2011.
    [26] W. Bai, R. Huang, Y. Cai, Y. Tang, X. Zhang, and Y. Wang, "Record Low-Power Organic RRAM With Sub-20-nA Reset Current," IEEE Electron Device Letters., vol. 34, pp. 223-225, 2013
    [27] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Mater. Sci. Eng., vol. 83, pp. 1–59, Sep. 2014.
    [28] Y. V. Pershin, and M. D. Venta, “Memory effects in complex materials and nanoscale systems,” Advanced in Physics – ADVAN PHYS.60 10.1080/00018732.2010.544961.
    [29] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of conducting filament growth in nanoscale resistive memories,” Nat. Commun., vol. 3, pp. 732, 2012.
    [30] Y. S. Lin, F. Zeng, S. G. Tang, H. Y. Liu, C. Chen, S. Gao, Y. G. Wang, and F. Pan, “Resistive switching mechanisms relating to oxygen vacancies migration in both interfaces in Ti/HfOx/Pt memory devices,” J. Appl. Phys., vol. 113, pp. 064510, Feb. 2013.
    [31] S. Kim, and Y. K. Choi, “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM,” IEEE Trans. Electron Devices., vol. 56, no. 12, pp. 3049-3054, Dec. 2009.
    [32] H. L. Ma, Z. Q. Wang, H. Y. Xu, L. Zhang, X. N. Zhao, M. S. Han, J. G. Ma, and Y. C. Liu, “Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments,” Chinese Physics B., 2016, 25(12): 127303
    [33] J. Y. Chen, C. L. Hsin, C. W. Huang, C. H. Chiu, Y. T. Huang, S. J. Lin, W. W. Wu, and L. J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Lett., vol. 13, pp. 3671-3677, Aug. 2013.
    [34] SIM H, SEONG D. J., CHANG M., “Excellent resistance switching characteristics of Pt/single-crystal Nb-doped SrTiO3 schottky junction,” 21st IEEE NVSMW. USA, 2006 :88 -89
    [35] F. C. Chiu, “A Review on Conduction Mechanisms in Dielectric Films,” Adv Mater Sci Eng., 2014
    [36] X-ray diffraction – Bruker D8 Discover, http://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover.
    [37] J. Goldstein, Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., Michael, and J. R., “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd ed.: Springer, 2003.
    [38] Transmission electron microscopy, https://en.wikipedia.org/wiki/Transmission_electron_microscopy#/media/File:Scheme_TEM_en.svg.
    [39] Ke-Jing Lee, Li-Wen Wang, Te-Kung Chiang, and Yeong-Her Wang, “Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory,” Materials (Basel)., 2015 Oct; 8(10): 7191–7198.
    [40] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application,” Nano Letters., vol. 9, no. 4, pp.1636-1643, Feb. 2009.
    [41] Qi Liu, Shibing Long, Wei Wang, Member, Qingyun Zuo, Sen Zhang, Junning Chen, and Ming Liu, “Improvement of Resistive Switching Properties in ZrO2-Based ReRAM With Implanted Ti Ions,” IEEE ELECTRON DEVICE LETTERS., vol. 30, NO. 12, Dec. 2009
    [42] Chih-Yi Liu, Xin-Jie Lin, Hung-Yu Wang, and Chun-Hung Lai, “Improved Resistive Switching Dispersion of NiOx Thin Film by Cu-Doping Method,” Japanese Journal of Applied Physics,. 49 (2010) 056507
    [43] Shimeng Yu, Bin Gao, Haibo Dai, Bing Sun, Lifeng Liu, Xiaoyan Liu Ruqi Han, Jinfeng Kang, and Bin Yuc, “Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers,” Electrochemical and Solid-State Letters., 13 2 H36-H38 2010
    [44] H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, “Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms,” Applied PHYSICS LETTERS., 96,192113 (2010)
    [45] Yu-Chi Chang, Ke-Jing Lee, Cheng-Jung Lee, Li-Wen Wang, and Yeong-Her Wang, “Bipolar Resistive Switching Behavior in Sol-Gel MgTiNiOx Memory Device,” IEEE Journal of the Electron Devices Society, vol. 4, pp. 321-327, 2016.
    [46] Zong-Han Lin, and Yeong-Her Wang, “Observation Of Indium Ion Migration-Induced Resistive Switching In Al/Mg0.5Ca0.5TiO3/ITO,” Appl. Phys. Lett., vol. 102, p. 053502, 2016.
    [47] Jaehoon Song, Akbar I. Inamdar, ByeongUk Jang, Kiyoung Jeon, YoungSam Kim, and Kyooho Jung, “Effects of Ultrathin Al Layer Insertion on Resistive Switching Performance in an Amorphous Aluminum Oxide Resistive Memory” Applied Physics Express., 3 (2010) 091101

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE