簡易檢索 / 詳目顯示

研究生: 吳駿凱
Wu, Chun-Kai
論文名稱: 雪人型地震超材料
A Snowman-like Seismic Metamaterial
指導教授: 蘇于琪
Su, Yu- Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 86
中文關鍵詞: 地震超材料局部共振帶隙全域暫態模擬
外文關鍵詞: Seismic metamaterials, local resonance, bandgap, transient simulation
相關次數: 點閱:62下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出新穎的地震超材料設計:雪人型地震超材料,其相較於文獻上相同類型的地震超材料,可產生更低頻與更寬的第一帶隙,而適宜阻隔地震波。我們透過幾何參數探討,選取合適的雪人型地震超材料尺寸,其帶隙區間為6.7 Hz- 9.32 Hz與 15.35 Hz- 16.03 Hz。本文亦透過設計全域模擬模型,探討雪人型地震超材料於單層土壤及多層土壤上的暫態波傳行為。結果顯示地震超材料衰減能量的頻率範圍與頻散圖一致,驗證本研究模擬之正確性。

    This paper proposes a novel seismic metamaterial design: snowman-type seismic metamaterial, which can generate a lower frequency and a wider first bandgap than the same type of seismic metamaterial in the literature, and it is suitable for blocking seismic waves. Through the discussion of geometric parameters, we select the appropriate size of the snowman-like seismic metamaterial, and its bandgap ranges from 6.7 Hz to 9.32 Hz and 15.35 Hz to 16.03 Hz. This paper designs a global simulation modal, and also discusses the transient wave propagation behavior of snowman-like seismic metamaterials on a single-layered soil medium and multi-layered soil media. The results show that the frequency range of the attenuation energy is consistent with the dispersion curve, and it verifies the correctness of the simulation in this study.

    中文摘要 i Extended ABSTRACT ii 誌謝 xiii 目錄 xv 表目錄 xviii 圖目錄 xix 符號表 xxii 第一章 緒論 1 1.1 文獻回顧 1 1.2 論文動機 9 1.3 論文簡介 10 第二章 週期性理論及分析方法 13 2.1 彈性波方程式 13 2.2 Bloch-Floquet 定理 13 2.3 第一布里淵區(first Brillouin zone) 14 2.4 頻散方程式 16 2.5 軟體使用及分析過程方法 17 2.5.1 軟體使用 17 2.5.2 分析過程和方法 17 第三章 雪人型地震超材料設計與幾何參數分析 18 3.1 地震超材料 18 3.1.1 雪人型地震超材料設計概念 18 3.1.2 T型地震超材料及雪人型地震超材料比較 22 3.2 幾何結構及參數分析 28 3.2.1 雪人型地震超材料結構探討 28 3.2.2 雪人型地震超材料幾何參數分析 29 3.2.3 雪人型地震超材料選定尺寸 37 第四章全域模型暫態模擬 41 4.1 全域暫態模擬 41 4.2 單層土壤全域暫態模擬 42 4.2.1 單層土壤全域模型設計 42 4.2.2 全域暫態數值模擬 46 4.3 分層土壤全域暫態模擬 52 4.3.1 雪人型地震超材料頻散關係(分層土壤) 52 4.3.2 分層土壤全域模型設計 55 4.3.3 全域暫態數值模擬 58 第五章 結論 63 5.1 結論 63 5.2 未來展望 64 參考文獻 66 附錄A:雪人型地震超材料體積運算 70 A.1 T型超材料體積轉換至雪人超材料體積 70 A.2 鑲嵌部分圓球,穩定雪人結構 71 A.3 計算 74 附錄B:Case 1及Case 2單層土壤全域暫態結果 75 B.1 Case 1全域暫態模擬 75 B.2 Case 2全域暫態模擬 79 附錄C 延伸討論 83 C.1 材料更換 83 C.2 接收點處不同方向探討 84

    [1] 台灣地震科學系統(民國103年4月30日)。
    檢自https://tesis.earth.sinica.edu.tw/new/ (Jan.30‚2022)

    [2] 中央氣象局,地震測報中心,災害地震。
    檢自https://scweb.cwb.gov.tw/zh-tw/page/iframe?txtUrl=/special/19990921/1999092101471273043.htm (Jan.30‚2022)

    [3] M. D. Symans‚ A. M. ASCE‚ F. A. Charney‚ F. ASCE‚ A. S. Whittaker‚ M. ASCE‚ M. C. Constantinou‚ M. ASCE‚ C. A. Kircher‚ M. ASCE‚ M. W. Johnson‚ M. ASCE‚ and R. J. McNamara‚ F. ASCE‚ “ Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments‚” J. Struct. Eng. 134(1): 3-21, 2008.

    [4] D. Mu, H. Shu, L. Zhao, and S. An, “ A Review of Research on Seismic Metamaterials,” Adv. Eng. Mater. 22: 1901148, 2020.

    [5] S. Brûlé, S. Enoch, and S. Guenneau, “ Emergence of seismic metamaterials: Current state and future perspectives,” Phys. Lett. A 384: 126034, 2020.

    [6] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “ Locally resonant sonic materials,” Sci. 289(5485): 1734-1736, 2000.

    [7] H. H. Huang, C. T. Sun, and G. L. Huang, “ On the negative effective mass density in acoustic metamaterials,” Int. J. Eng. Sci. 47(4): 610-617, 2009.

    [8] Z. F. Shi, Z. B. Cheng, and C. Xiong, “ A New Seismic Isolation Method by Using a Periodic Foundation,” Earth and Space, 2010.

    [9] A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, “ Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface,” Phys. Rev. B 81(21): 214303, 2010.

    [10] Y. Achaoui, A. Khelif, S. Benchabane, L. Robert, and V. Laude, “ Experiment observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars,” Phys. Rev. B 83(10): 104201, 2011.

    [11] S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “ Experiments on Seismic Metamaterials: Molding Surface Waves,” Phys. Rev. Lett. 112(13): 133901, 2014.

    [12] Q. Du, Y. Zeng, G. Huang, and H. Yang, “ Elastic metamaterial-based seismic shield for both Lamb and surface waves,” AIP Adv. 7(7): 075015, 2017.

    [13] Y. Zeng, Y. Xu, K. Deng, Z. Zeng, H. Yang, M. Muzamil, and Q. Du, “ Low-frequency broadband seismic metamaterial using I-shaped pillars in a half space,” J. Appl. Phys. 123(21): 214901, 2018.

    [14] Y. Xu, R. Xu, P. Peng, H. Yang, Y. Zeng, and Q. Du, “ Broadband H-shaped seismic metamaterial with a rubber coating,” EPL 127: 17002, 2019.

    [15] Z. Liu, K. Qin, and G. Yu, “ Partially Embedded Gradient Metabarrier: Broadband Shielding from Seismic Rayleigh Waves at Ultralow Frequencies,” J. Eng. Mech. 146(5): 04020032, 2020.

    [16] Y. Zeng, Y. Xu, H. Yang, M. Muzamil, R. Xu, K. Deng, P. Peng, and Q. Du, “ A Matryoshka-like seismic metamaterial with wide band-gap characteristics,” Int. J. Solids Struct. 185-186: 334-341, 2020.

    [17] Y. Zeng, P. Peng, Q. Du, Y. Wang, and B. Assouar, “ Subwavelength seismic metamaterial with an ultra-low frequency bandgap,” J. Appl. Phys. 128: 014901, 2020.

    [18] Y. Zeng, Y. Xu, K. Deng, P. Peng, H. Yang, M. Muzamil, and Q. Du, ” A broadband seismic metamaterial plate with simple structure and easy realization,” J. Appl. Phys. 125: 224901, 2019.

    [19] Y. Zeng, S. Zhang, H. Zhou, Y. Wang, L. Cao, Y. Zhu, Q. Du, B. Assouar, and Y. Wang, “ Broadband inverted T-shaped seismic metamaterial,” Mater. Des. 208: 109906, 2021.

    [20] D. Ji, and G. Yu, “ Shielding performance of T-shaped periodic barrier for surface waves in transversely isotropic soil,” J. Mater.: Des. Appl. 0(0): 1-13, 2021.

    [21] K. Zhang, J. Luo, F. Hong, and Z. Deng, “ Seismic metamaterials with cross-like and square steel sections for low-frequency wide band gaps,” Eng. Struct. 232: 111870, 2021.

    [22] T. Varma, B. Ungureanu, S. Sarkar, R. Craster, S. Guenneau, and S. Brûlé, “ The Influence of Clamping, Structure Geometry, and Material on Seismic Metamaterial Performance,” Front. Mater. 8: 603820, 2021.

    [23] L. Li, Q. Jia, M. Tong, P. Li, and X. Zhang, “ Radial seismic metamaterials with ultra-low frequency broadband characteristics,” J. Phys. D: Appl. Phys. 54: 505104, 2021.

    [24] A. Palermo, S. Krödel, A. Marzani, and C. Daraio, “ Engineered metabarrier as shield from seismic surface waves,” Sci. Rep. 6: 39356, 2016.

    [25] Y. Achaoui, B. Ungureanu, S. Enoch, S. Brûlé, and S. Guenneau, “ Seismic waves damping with arrays of inertial resonators,” Extreme Mech. Lett. 8: 30-37, 2016.

    [26] M. Miniaci, A. Krushynska, F. Bosia, and N. Pugno, “ Large scale mechanical metamaterials as seismic shields,” New. J. Phys. 18: 083041, 2016.

    [27] A. Colombi, P. Roux, S. Guenneau, P. Gueguen , and R. Craster, “ Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances,” Sci. Rep. 6: 19238, 2016.
    [28] Y. Liu, J. Huang, Y. Li, Z. Shi, “ Trees as large-scale natural metamaterials for low-frequency vibration reduction,” Constr. Build. Mater. 199: 737-745, 2019.

    [29] S. Krödel, N. Thome, C. Daraio, “ Wide band-gap seismic metastructures,” Extreme Mech. Lett. 4: 111-117, 2015.

    [30] Y. Achaoui, T. Antonakakis, S. Brûlé, R. Craster, S. Enoch and S. Guenneau, “ Clamped seismic metamaterials: ultra-low frequency stop bands,” New. J. Phys. 19: 0.63022, 2017.

    [31] Y. Chen, F. Qian, F. Scarpa, L. Zuo, and X. Zhuang, “ Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps,” Mater. Des. 175: 107813, 2019.

    [32] Muhammad, C. W. Lim, and J. N. Reddy, “ Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium,” Eng. Struct. 188: 440-451, 2019.

    [33] L. Brillouin, Wave Propagation in Periodic Structures, Dover., New York, 1953

    [34] F. Bloch, “ U ̈ber die Quantenmechanik der Elektronen in Kristallgitten,” Zeitschrift fu ̈r Physik 52: 555-600. 1929.

    下載圖示 校內:2024-09-02公開
    校外:2024-09-02公開
    QR CODE