| 研究生: |
陳品涵 Chen, Pin-Han |
|---|---|
| 論文名稱: |
結合AI影像辨識與機器手臂分選的矽晶太陽能板回收新方法 A Novel Approach to Crystalline Silicon Solar Panel Recycling by Integrating AI Image Recognition and Robotic Arm Segregation |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 230 |
| 中文關鍵詞: | 矽晶太陽能板 、破碎 、人工智慧(AI) 、物件偵測 、分割 、Yolov8 、機器設計 、廢棄物管理 |
| 外文關鍵詞: | Crystalline Silicon Solar Panels, Crushing, Artificial intelligence (AI), Object Detection, Segmentation, Yolov8, Robot Design, Waste Management |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的發想起源於矽晶型太陽能板在廣泛使用下所產生的迫切回收需求。首先,文獻回顧了矽晶型太陽能板的組成、各項回收技術,指出現有回收方法在處理效率及永續性方面的不足,也強調人工智慧(AI)與機器人技術在提升回收過程中的潛力。
本研究方法結合破碎方法、AI影像辨識及機器手臂系統整合,探討破碎後材料的解離程度,以產出適合AI系統辨識的碎片,並以YOLOv8x-seg模型進行即時辨識,透過Modbus TCP將影像辨識結果及3D位置傳遞給KUKA機器手臂系統。機器手臂控制器作為中控,協調震動盤、餵料器和相機的即時反應。實驗結果顯示,爪刀型破碎機對於矽晶型太陽能板的材料單離更有效率,破碎尺寸介於1.19至4毫米可顯著提升材料回收率和回收處理量。
YOLOv8x-seg模型在邊界框預測、分割遮罩和物件分類的損失函數上呈現穩定下降趨勢。精確率和召回率達到平衡,在各類別中(特別是銅碎片)呈現高指標度。mAP分析顯示,模型性能在短訓練週期內快速提升並穩定,呈現快速收斂。驗證批次預測顯示模型在檢測和分類上的穩健性,但在處理銅分類偶有辨識錯誤情形。
在成功夾取率方面,最佳速度為10%,平均成功率達87.63%,而在更高速度下由於真空吸力不足,成功率有所下降。準確度在所有速度下保持穩定,平均為78.81%,顯示AI影像辨識結合到機器人應用時需考量實際機台設計對於辨識表現的影響。處理量分析顯示處理量趨勢穩定,15%的速度可每小時處理13克太陽能板碎片。本研究的AI影像辨識呈現高準確度的穩定運行,但在機器手臂的末端治具設計仍需要改進,以便達到更高的成功夾取率來應對未來需求。
This study addresses the urgent need to recycle crystalline silicon solar panels, motivated by their widespread use and the substantial waste they generate. It begins with a comprehensive examination of the composition of solar panels and identifies deficiencies in the efficiency and sustainability of current recycling methods. The literature review highlights the advancement of recycling techniques and the potential of artificial intelligence (AI) and robotics to enhance these processes.
The proposed method focuses on refining crushing processes to produce fragments that are optimal for recognition by AI, utilizing the YOLOv8x-seg algorithm for real-time object detection and classification of these fragments. Image recognition results interface with KUKA robot arms via Modbus TCP to relay 3D positions. To coordinate this system, the robot controller manages the integration of a vibration plate, feeder, and CCD. Experimental results show that the Claw-Blades Crusher is more effective for material separation in crystalline solar panels. Focusing on mid-size ranges (1.19 to 4 mm) significantly enhances material recovery and recycling throughput.
The optimized YOLOv8x-seg model shows consistent decreases in loss metrics, indicating improved accuracy in bounding box predictions, segmentation masks, and object classifications. Precision and recall metrics are balanced, with high scores for most classes, particularly copper fragments. mAP analysis revealed steady performance improvement and stabilization over epochs. Validation batch predictions confirmed the robustness of the model in detecting and classifying fragments despite challenges with copper fragments.
The success picking rate was highest at 10%, averaging 87.63%, with a decrease at higher speeds due to insufficient vacuum force. Accuracy remained stable across all speeds, averaging 78.81%, highlighting the need to integrate AI performance with practical robotic design. Capacity analysis showed stable processing trends, with 15% speed processing approximately 13 grams per hour. The system performs stably with high-accuracy AI image recognition, though the robot's end effector design needs improvement for higher success picking rates to meet future demands.
1. Heath, G.A., et al., Research and development priorities for silicon photovoltaic module recycling to support a circular economy. Nature Energy, 2020. 5(7): p. 502-510.
2. Gielen, D., et al., Global energy transformation: a roadmap to 2050. 2019.
3. Nemet, G.F., How solar energy became cheap: A model for low-carbon innovation. 2019: Routledge.
4. Huang, W.-H., et al., Strategy and technology to recycle wafer-silicon solar modules. Solar Energy, 2017. 144: p. 22-31.
5. Weckend, S., A. Wade, and G.A. Heath, End of life management: solar photovoltaic panels. 2016, National Renewable Energy Lab.(NREL), Golden, CO (United States).
6. Majewski, P., et al., Recycling of solar PV panels- product stewardship and regulatory approaches. Energy Policy, 2021. 149.
7. Mohammed Niyaz, H., R. Meena, and R. Gupta, Impact of cracks on crystalline silicon photovoltaic modules temperature distribution. Solar Energy, 2021. 225: p. 148-161.
8. Tune, D.D. and B.S. Flavel, Advances in carbon nanotube–silicon heterojunction solar cells. Advanced Energy Materials, 2018. 8(15): p. 1703241.
9. Yu, H.F., et al., Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review. Sustainability, 2022. 14(14).
10. Shahsavari, A., F. Yazdi, and H. Yazdi, Potential of solar energy in Iran for carbon dioxide mitigation. International Journal of Environmental Science and Technology, 2019. 16: p. 507-524.
11. Tawalbeh, M., et al., Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment, 2021. 759: p. 143528.
12. Klugmann-Radziemska, E. and P. Ostrowski, Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy, 2010. 35(8): p. 1751-1759.
13. Walker, G.R. and P.C. Sernia, Cascaded DC-DC converter connection of photovoltaic modules. IEEE transactions on power electronics, 2004. 19(4): p. 1130-1139.
14. Tan, J., S. Jia, and S. Ramakrishna, End-of-Life Photovoltaic Modules. Energies, 2022. 15(14).
15. Chowdhury, M.S., et al., An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 2020. 27.
16. Muteri, V., et al., Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies, 2020. 13(1).
17. Li, X., et al., Back EVA recycling from c-Si photovoltaic module without damaging solar cell via laser irradiation followed by mechanical peeling. Waste Manag, 2022. 137: p. 312-318.
18. Tocháček, J. and Z. Vrátníčková, Polymer life-time prediction: The role of temperature in UV accelerated ageing of polypropylene and its copolymers. Polymer Testing, 2014. 36: p. 82-87.
19. Fiandra, V., et al., Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials. Waste Manag, 2019. 87: p. 97-107.
20. de Oliveira, M.C.C., et al., The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renewable and Sustainable Energy Reviews, 2018. 81: p. 2299-2317.
21. Kahoul, N., et al., Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment. Renewable Energy, 2017. 109: p. 66-72.
22. Han, H., et al., Degradation analysis of crystalline silicon photovoltaic modules exposed over 30 years in hot-humid climate in China. Solar Energy, 2018. 170: p. 510-519.
23. Corcelli, F., et al., Sustainable urban electricity supply chain – Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life. Ecological Indicators, 2018. 94: p. 37-51.
24. Herceg, S., S. Pinto Bautista, and K.-A. Weiß, Influence of Waste Management on the Environmental Footprint of Electricity Produced by Photovoltaic Systems. Energies, 2020. 13(9).
25. Sander, K., et al., Study on the Development of a Takeback and Recovery System for Photovoltaic Modules. 2007.
26. Xu, Y., et al., Global status of recycling waste solar panels: A review. Waste Manag, 2018. 75: p. 450-458.
27. Franco, M.A. and S.N. Groesser, A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy. Sustainability, 2021. 13(17).
28. IRENA, Renewable energy statistics 2023. 2023.
29. IEA, Renewables: Analysis and Forecast to 2026. International Energy Agency: Paris, France, 2021.
30. Sarraf, D. and S. Dale, BP Energy Outlook 2023. 2023.
31. McKinsey, Global Energy Perspective 2022 Executive-Summary. 2022, McKinsey & Company: Atlanta, GA, USA.
32. IRENA, I.-P., End of Life Management. Solar Photovoltaic Panels, 2016.
33. Domínguez, A. and R. Geyer, Photovoltaic waste assessment of major photovoltaic installations in the United States of America. Renewable Energy, 2019. 133: p. 1188-1200.
34. Domínguez, A. and R. Geyer, Photovoltaic waste assessment in Mexico. Resources, Conservation and Recycling, 2017. 127: p. 29-41.
35. Jamali, M.Y., et al., Analysis of photovoltaic technology development based on technology life cycle approach. Journal of Renewable and Sustainable Energy, 2016. 8(3).
36. Tan, J., S.K. Tiwari, and S. Ramakrishna, Single-use plastics in the food services industry: can it be sustainable? Materials Circular Economy, 2021. 3(1): p. 7.
37. Tan, J., F.J. Tan, and S. Ramakrishna, Transitioning to a circular economy: A systematic review of its drivers and barriers. Sustainability, 2022. 14(3): p. 1757.
38. Kumar, A., M. Holuszko, and D.C.R. Espinosa, E-waste: An overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling, 2017. 122: p. 32-42.
39. D’Adamo, I., M. Miliacca, and P. Rosa, Economic feasibility for recycling of waste crystalline silicon photovoltaic modules. International Journal of Photoenergy, 2017. 2017: p. 1-6.
40. Sica, D., et al., Management of end-of-life photovoltaic panels as a step towards a circular economy. Renewable and Sustainable Energy Reviews, 2018. 82: p. 2934-2945.
41. Luo, W., et al., A comparative life-cycle assessment of photovoltaic electricity generation in Singapore by multicrystalline silicon technologies. Solar Energy Materials and Solar Cells, 2018. 174: p. 157-162.
42. Kim, S. and B. Jeong, Closed-loop supply chain planning model for a photovoltaic system manufacturer with internal and external recycling. Sustainability, 2016. 8(7): p. 596.
43. Farrell, C., et al., Pyrolysis Kinetic Modeling of a Poly(ethylene-co-vinyl acetate) Encapsulant Found in Waste Photovoltaic Modules. Industrial & Engineering Chemistry Research, 2021. 60(37): p. 13492-13504.
44. Peeters, J.R., et al., Forecasting the composition of emerging waste streams with sensitivity analysis: A case study for photovoltaic (PV) panels in Flanders. Resources, Conservation and Recycling, 2017. 120: p. 14-26.
45. Tao, M., et al., Major challenges and opportunities in silicon solar module recycling. Progress in Photovoltaics: Research and Applications, 2020. 28(10): p. 1077-1088.
46. Komoto, K., et al., End-of-life management of photovoltaic panels: Trends in PV module recycling technologies. 2018, National Renewable Energy Lab.(NREL), Golden, CO (United States).
47. Latunussa, C.E.L., et al., Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 2016. 156: p. 101-111.
48. Jung, B., et al., Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal. ACS Sustainable Chemistry & Engineering, 2016. 4(8): p. 4079-4083.
49. Klugmann-Radziemska, E., et al., Chemical, thermal and laser processes in recycling of photovoltaic silicon solar cells and modules. Ecological Chemistry and Engineering S-Chemia i Inżynieria Ekologiczna S, 2010. 17: p. 384-391.
50. Ilias, A.V., et al., Integration & assessment of recycling into c-Si photovoltaic module’s life cycle. International Journal of Sustainable Engineering, 2018. 11(3): p. 186-195.
51. Savvilotidou, V., A. Antoniou, and E. Gidarakos, Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Manag, 2017. 59: p. 394-402.
52. Dias, P., et al., Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Manag, 2016. 57: p. 220-225.
53. Shin, J., J. Park, and N. Park, A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Solar Energy Materials and Solar Cells, 2017. 162: p. 1-6.
54. Granata, G., et al., Recycling of photovoltaic panels by physical operations. Solar Energy Materials and Solar Cells, 2014. 123: p. 239-248.
55. Wang, T.-Y., J.-C. Hsiao, and C.-H. Du. Recycling of materials from silicon base solar cell module. in 2012 38th IEEE Photovoltaic Specialists Conference. 2012. IEEE.
56. Kim, Y. and J. Lee, Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent. Solar energy materials and solar cells, 2012. 98: p. 317-322.
57. Tammaro, M., et al., Thermal treatment of waste photovoltaic module for recovery and recycling: Experimental assessment of the presence of metals in the gas emissions and in the ashes. Renewable Energy, 2015. 81: p. 103-112.
58. Chitra, et al., Structural composition and thermal stability of extracted EVA from silicon solar modules waste. Solar Energy, 2020. 211: p. 74-81.
59. Dias, P., et al., Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. Journal of Sustainable Metallurgy, 2018. 4: p. 176-186.
60. Bombach, E., et al. Technical experience during thermal and chemical recycling of a 23 year old PV generator formerly installed on Pellworm island. in 21st European photovoltaic solar energy conference. 2006.
61. Zeng, D.-w., M. Born, and K. Wambach, Pyrolysis of EVA and its application in recycling of photovoltaic modules. Journal of environmental sciences, 2004. 16(6): p. 889-893.
62. Mapari, R., et al., Automatic waste segregator and monitoring system. International Journal of Advanced Computer Research, 2020. 10(49): p. 171.
63. Pagnanelli, F., et al., Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste management, 2017. 59: p. 422-431.
64. Dias, P., P. Dias, and H. Veit, Recycling crystalline silicon photovoltaic modules. Emerging Photovoltaic Materials: Silicon & Beyond, 2018: p. 61-102.
65. Salama, A., et al., Distinct recovery of copper and aluminum from waste electric wires using a roll-type electrostatic separator. Waste Management, 2018. 76: p. 207-216.
66. Akimoto, Y., A. Iizuka, and E. Shibata, High-voltage pulse crushing and physical separation of polycrystalline silicon photovoltaic panels. Minerals Engineering, 2018. 125: p. 1-9.
67. Fernández, L.J., et al., Recycling silicon solar cell waste in cement-based systems. Solar energy materials and solar cells, 2011. 95(7): p. 1701-1706.
68. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE) 2012, Official Journal of the European Union: European Parliament and Council of the European Union.
69. Zhao, P., et al., A novel and efficient method for resources recycling in waste photovoltaic panels: High voltage pulse crushing. Journal of Cleaner Production, 2020. 257.
70. Andres, U., Development and prospects of mineral liberation by electrical pulses. International Journal of Mineral Processing, 2010. 97(1-4): p. 31-38.
71. Wang, E., F. Shi, and E. Manlapig, Pre-weakening of mineral ores by high voltage pulses. Minerals Engineering, 2011. 24(5): p. 455-462.
72. Yan, G., et al., Enrichment of chalcopyrite using high-voltage pulse discharge. Powder Technology, 2018. 340: p. 420-427.
73. Zuo, W. and F. Shi, A t10-based method for evaluation of ore pre-weakening and energy reduction. Minerals Engineering, 2015. 79: p. 212-219.
74. Song, B.P., et al., Recycling experimental investigation on end of life photovoltaic panels by application of high voltage fragmentation. Waste Manag, 2020. 101: p. 180-187.
75. Nevala, S.-M., et al., Electro-hydraulic fragmentation vs conventional crushing of photovoltaic panels–Impact on recycling. Waste management, 2019. 87: p. 43-50.
76. La Mantia, F., et al., Photooxidation and photostabilization of EVA and cross-linked EVA. Polymer Testing, 2016. 51: p. 6-12.
77. Dias, P., et al., Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Manag, 2017. 60: p. 716-722.
78. Deng, R., et al., A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews, 2019. 109: p. 532-550.
79. Wang, R., et al., Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment. RSC advances, 2019. 9(32): p. 18115-18123.
80. Zhang, M., A. Buekens, and X. Li, Brominated flame retardants and the formation of dioxins and furans in fires and combustion. Journal of hazardous materials, 2016. 304: p. 26-39.
81. Kang, S., et al., Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renewable Energy, 2012. 47: p. 152-159.
82. Klugmann-Radziemska, E., et al., Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar energy materials and solar cells, 2010. 94(12): p. 2275-2282.
83. McDonald, N.C. and J.M. Pearce, Producer responsibility and recycling solar photovoltaic modules. Energy Policy, 2010. 38(11): p. 7041-7047.
84. Yang, E.-H., et al., Environmentally friendly recovery of Ag from end-of-life c-Si solar cell using organic acid and its electrochemical purification. Hydrometallurgy, 2017. 167: p. 129-133.
85. Padoan, F.C.S.M., P. Altimari, and F. Pagnanelli, Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy, 2019. 177: p. 746-761.
86. Doi, T., et al., Experimental study on PV module recycling with organic solvent method. Solar energy materials and solar cells, 2001. 67(1-4): p. 397-403.
87. Mezei, A., et al., Hydrometallurgical recycling of the semiconductor material from photovoltaic materials-Part one: Leaching. Hydrometallurgy, 2008: p. 209.
88. Klugmann-Radziemska, E., Recycling of Photovoltaic Solar Cells and Modules-Te State-of-Art. 2014: Lambert Academic Publishing.
89. Tao, J. and S. Yu, Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 2015. 141: p. 108-124.
90. Palitzsch, W. and U. Loser. A new and intelligent de-metalization step of broken silicon cells and silicon cell production waste in the recycling procedure of crystalline Si modules. in 2011 37th IEEE Photovoltaic Specialists Conference. 2011. IEEE.
91. Nieland, S., et al. New approaches for component recycling of crystalline solar modules. in 2012 Electronics Goes Green 2012+. 2012. IEEE.
92. Lee, C.-H., et al., Resource recovery of scrap silicon solar battery cell. Waste management & research, 2013. 31(5): p. 518-524.
93. Dias, et al., Photovoltaic solar panels of crystalline silicon: Characterization and separation. Waste Management & Research, 2016. 34(3): p. 235-245.
94. Hiskey, J. and V. Sanchez, Mechanistic and kinetic aspects of silver dissolution in cyanide solutions. Journal of Applied Electrochemistry, 1990. 20(3): p. 479-487.
95. Gernon, M., Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green chemistry, 1999. 1(3): p. 127-140.
96. Lee, J.-K., et al., Photovoltaic performance of c-Si wafer reclaimed from end-of-life solar cell using various mixing ratios of HF and HNO3. Solar Energy Materials and Solar Cells, 2017. 160: p. 301-306.
97. Nain, P. and A. Kumar, Ecological and human health risk assessment of metals leached from end-of-life solar photovoltaics. Environmental pollution, 2020. 267: p. 115393.
98. Verma, S., et al., Recent advances on PFAS degradation via thermal and nonthermal methods. Chemical engineering journal advances, 2022: p. 100421.
99. Zachmann, N., Separation of organic components from crystalline silicon solar cells by supercritical fluid technology. 2020.
100. Granata, G., et al., Recycling of solar photovoltaic panels: Techno-economic assessment in waste management perspective. Journal of Cleaner Production, 2022. 363.
101. Zeng, X., J.A. Mathews, and J. Li, Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining. Environ Sci Technol, 2018. 52(8): p. 4835-4841.
102. Jing Li, J.S., Xilong Yao, Jiashuo Li, Life cycle analysis of the economic costs and environmental benefits of photovoltaic module waste recycling in China. Resources, Conservation and Recycling, 2023. 196: p. 10727.
103. Pablo R. Dias, L.S., Nathan L. Chang, Marina Monteiro Lunardi, Rong Deng, Blair Trigger, Lucas Bonan Gomes, Renate Egan, Hugo Veit, High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment. Renewable and Sustainable Energy Reviews, 2022. 169, 2022, 112900.
104. Shin, H.-C., et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 2016. 35(5): p. 1285-1298.
105. Lozano-Perez, T., Automatic planning of manipulator transfer movements. IEEE Transactions on Systems, Man, and Cybernetics, 1981. 11(10): p. 681-698.
106. Cecil*, J., D. Vasquez, and D. Powell, A review of gripping and manipulation techniques for micro-assembly applications. International Journal of Production Research, 2005. 43(4): p. 819-828.
107. Konstantinidis, F.K., et al., Multi-sensor cyber-physical sorting system (CPSS) based on Industry 4.0 principles: A multi-functional approach. Procedia Computer Science, 2023. 217: p. 227-237.
108. Maharshi, S., Cloud based disassembly of electric vehicle battery. Procedia manufacturing, 2019. 30: p. 136-142.
109. Gupta, P.K., et al., The use of modern technology in smart waste management and recycling: artificial intelligence and machine learning. Recent advances in computational intelligence, 2019: p. 173-188.
110. Ahmed, M.I.B., et al., Deep Learning Approach to Recyclable Products Classification: Towards Sustainable Waste Management. Sustainability, 2023. 15(14): p. 11138.
111. Fang, B., et al., Artificial intelligence for waste management in smart cities: a review. Environmental Chemistry Letters, 2023: p. 1-31.
112. Satav, A.G., et al., A state-of-the-art review on robotics in waste sorting: scope and challenges. International Journal on Interactive Design and Manufacturing (IJIDeM), 2023: p. 1-18.
113. Abdallah, M., et al., Artificial intelligence applications in solid waste management: A systematic research review. Waste Management, 2020. 109: p. 231-246.
114. Duch, W., Setiono, R., & Zurada, J. M.. Computational intelligence methods for rule-based data understanding. . Proceedings of the IEEE, , 2004. 92(5): p. 771-805.
115. Ahmad, H.B., Ensemble Classifier Based Spectrum Sensing in Cognitive Radio Networks. Wireless Communications and Mobile Computing, 2019. 2019: p. 1-16.
116. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J., Overview of supervised learning. The elements of statistical learning: Data mining, inference, and prediction. 2009. 9-41.
117. Chen, N., House price prediction model of Zhaoqing city based on correlation analysis and multiple linear regression analysis. Wireless Communications and Mobile Computing, 2022. 2022(1)(9590704).
118. Desmond, M., Brachman, M., Duesterwald, E., Dugan, C., Nath Joshi, N., Pan, Q., & Spina, C. , AI Assisted Data Labeling with Interactive Auto Label. . Proceedings of the AAAI Conference on Artificial Intelligence, , , 2022. 36(11): p. 13161-13163. .
119. Rafiq, H., Shi, X., Zhang, H., Li, H., Ochani, M. K., & Shah, A. A., Generalizability improvement of deep learning-based non-intrusive load monitoring system using data augmentation. IEEE Transactions on Smart Grid, 2021. 12(4): p. 3265-3277.
120. Chi, S., Li, X., Tian, Y., Li, J., Kong, X., Ding, K., ... & Li, J., Semi-supervised learning to improve generalizability of risk prediction models. Journal of biomedical informatics, 2019. 92(103117).
121. Barlow, H.B., Unsupervised learning. Neural computation, 1989. 1(3): p. 295-311.
122. Liang, Q., Li, P., Hung, P. C., & Wu, X., Clustering web services for automatic categorization., in 2009 IEEE International Conference on Services Computing 2009, IEEE. p. 380-387.
123. Sun, Y., Zhang, Y., Chen, Y., & Jin, R. , Conversational recommendation system with unsupervised learning. , in In Proceedings of the 10th acm conference on recommender systems 2016. p. pp. 397-398.
124. Chaudhary, L., & Singh, B., Community detection using unsupervised machine learning techniques on COVID-19 dataset. Social Network Analysis and Mining, 2021. 11: p. 1-9.
125. Zou, X., Holmes, E., Nicholson, J. K., & Loo, R. L., Automatic spectroscopic data categorization by clustering analysis (ASCLAN): a data-driven approach for distinguishing discriminatory metabolites for phenotypic subclasses. . Analytical chemistry, 2016. 88(11): p. 5670-5679.
126. Kaelbling, L.P., Littman, M. L., & Moore, A. W. , Reinforcement learning: A survey. Journal of artificial intelligence research, 1996. J, 4, : p. 237-285.
127. Van Hasselt, H., Guez, A., & Silver, D., Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference on artificial intelligence 2016. 30.
128. Chen, L., & Gao, Q., Application of deep reinforcement learning on automated stock trading., in In 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS) 2019, IEEE. p. pp. 29-33.
129. Tan, F., Yan, P., & Guan, X. , Deep reinforcement learning: from Q-learning to deep Q-learning. , in In Neural Information Processing: 24th International Conference, ICONIP 2017. 2017, Springer Guangzhou, China. p. pp. 475-483.
130. Zhang, S., Wu, T., Pan, M., Zhang, C., & Yu, Y. , A-SARSA: A predictive container auto-scaling algorithm based on reinforcement learning., in In 2020 IEEE international conference on web services (ICWS) 2020, IEEE. p. pp. 489-497.
131. Granter, S.R., Beck, A. H., & Papke Jr, D. J., AlphaGo, deep learning, and the future of the human microscopist. . Archives of pathology & laboratory medicine, 2017. 141(5): p. 619-621.
132. LeCun, Y., Bengio, Y., & Hinton, G. , Deep learning. nature, 2015. 521(7553): p. 436-444.
133. Dobay, A., Ford, J., Decker, S., Ampanozi, G., Franckenberg, S., Affolter, R., ... & Ebert, L. C. , Potential use of deep learning techniques for postmortem imaging. Forensic Science, Medicine and Pathology, 2020. 16(16): p. 671-679.
134. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. , Recent advances in convolutional neural networks. Pattern recognition, 2018. 77: p. 354-377.
135. Schmidt, R.M., Recurrent neural networks (rnns): A gentle introduction and overview. arXiv, 2019. 1912(05911.).
136. Yu, Y., Si, X., Hu, C., & Zhang, J., A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 2019. 31(7): p. 1235-1270.
137. Hao, Y., Dong, L., Wei, F., & Xu, K., Self-attention attribution: Interpreting information interactions inside transformer. , in In Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
138. Hajiyev, A., How chatgpt Works: Understanding the Architecture and Training Process of chatgpt. , in In 1st INTERNATIONAL CONFERENCE ON THE 4th INDUSTRIAL REVOLUTION AND INFORMATION TECHNOLOGY 2023. p. pp. 65-68.
139. Rice, L., E. Wong, and Z. Kolter. Overfitting in adversarially robust deep learning. in International conference on machine learning. 2020. PMLR.
140. Naseem, U., et al., Transformer based deep intelligent contextual embedding for twitter sentiment analysis. Future Generation Computer Systems, 2020. 113: p. 58-69.
141. Bachute, M.R. and J.M. Subhedar, Autonomous driving architectures: insights of machine learning and deep learning algorithms. Machine Learning with Applications, 2021. 6: p. 100164.
142. Verber, D., Implementation of massive artificial neural networks with CUDA. Cutting edge research in new technologies, 2012: p. 277-302.
143. Pereda, A.E., Electrical synapses and their functional interactions with chemical synapses. Nature Reviews Neuroscience, 2014. 15(4): p. 250-263.
144. Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 1958. 65(6): p. 386.
145. Camuñas-Mesa, L.A., B. Linares-Barranco, and T. Serrano-Gotarredona, Neuromorphic spiking neural networks and their memristor-CMOS hardware implementations. Materials, 2019. 12(17): p. 2745.
146. Kufandirimbwa, O. and R. Gotora, Spam detection using artificial neural networks (perceptron learning rule). Online Journal of Physical and Environmental Science Research, 2012. 1(2): p. 22-29.
147. Zou, J., Y. Han, and S.-S. So, Overview of artificial neural networks. Artificial neural networks: methods and applications, 2009: p. 14-22.
148. Thomas, P. and M.-C. Suhner, A new multilayer perceptron pruning algorithm for classification and regression applications. Neural Processing Letters, 2015. 42: p. 437-458.
149. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444.
150. Cheng, Y., et al., Model compression and acceleration for deep neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 2018. 35(1): p. 126-136.
151. Hodo, E., et al., Shallow and deep networks intrusion detection system: A taxonomy and survey. arXiv preprint arXiv:1701.02145, 2017.
152. Rasamoelina, A.D., F. Adjailia, and P. Sinčák. A review of activation function for artificial neural network. in 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI). 2020. IEEE.
153. Pineiro, J.-A., M.D. Ercegovac, and J.D. Bruguera, Algorithm and architecture for logarithm, exponential, and powering computation. IEEE Transactions on Computers, 2004. 53(9): p. 1085-1096.
154. Mercioni, M.A. and S. Holban. The most used activation functions: Classic versus current. in 2020 International Conference on Development and Application Systems (DAS). 2020. IEEE.
155. Kouretas, I. and V. Paliouras. Simplified hardware implementation of the softmax activation function. in 2019 8th international conference on modern circuits and systems technologies (MOCAST). 2019. IEEE.
156. Zheng, H., et al. Improving deep neural networks using softplus units. in 2015 International joint conference on neural networks (IJCNN). 2015. IEEE.
157. Wang, Q., et al., A comprehensive survey of loss functions in machine learning. Annals of Data Science, 2020: p. 1-26.
158. Muthukumar, V., et al., Classification vs regression in overparameterized regimes: Does the loss function matter? Journal of Machine Learning Research, 2021. 22(222): p. 1-69.
159. Baldi, P., Gradient descent learning algorithm overview: A general dynamical systems perspective. IEEE Transactions on neural networks, 1995. 6(1): p. 182-195.
160. Ullah, I., et al., Broadside pattern correction techniques for conformal antenna arrays. Advances in Array Optimization, 2020: p. 91.
161. Singh, A., et al., Comprehensive overview of backpropagation algorithm for digital image denoising. Electronics, 2022. 11(10): p. 1590.
162. Krittanawong, C., et al., Deep learning for cardiovascular medicine: a practical primer. European heart journal, 2019. 40(25): p. 2058-2073.
163. Ruder, S., An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, 2016.
164. Haji, S.H. and A.M. Abdulazeez, Comparison of optimization techniques based on gradient descent algorithm: A review. PalArch's Journal of Archaeology of Egypt/Egyptology, 2021. 18(4): p. 2715-2743.
165. Smith, S., E. Elsen, and S. De. On the generalization benefit of noise in stochastic gradient descent. in International Conference on Machine Learning. 2020. PMLR.
166. Qian, N., On the momentum term in gradient descent learning algorithms. Neural networks, 1999. 12(1): p. 145-151.
167. Malitsky, Y. and K. Mishchenko, Adaptive gradient descent without descent. arXiv preprint arXiv:1910.09529, 2019.
168. Xu, D., et al., Convergence of the RMSProp deep learning method with penalty for nonconvex optimization. Neural Networks, 2021. 139: p. 17-23.
169. Zou, F., et al. A sufficient condition for convergences of adam and rmsprop. in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. 2019.
170. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
171. Tyasnurita, R., A. Shahriar, and R. John, Improving performance of a hyper-heuristic using a multilayer perceptron for vehicle routing. 2015.
172. Rumelhart, D.E., et al., Backpropagation: The basic theory, in Backpropagation. 2013, Psychology Press. p. 1-34.
173. Dalkiliç, H.Y. and S.A. Hashimi, Prediction of daily streamflow using artificial neural networks (ANNs), wavelet neural networks (WNNs), and adaptive neuro-fuzzy inference system (ANFIS) models. Water Supply, 2020. 20(4): p. 1396-1408.
174. Ying, X. An overview of overfitting and its solutions. in Journal of physics: Conference series. 2019. IOP Publishing.
175. Srebro, N., J. Rennie, and T. Jaakkola, Maximum-margin matrix factorization. Advances in neural information processing systems, 2004. 17.
176. Srivastava, N., et al., Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 2014. 15(1): p. 1929-1958.
177. Srivastava, N., Improving neural networks with dropout. University of Toronto, 2013. 182(566): p. 7.
178. Trifonova, O., P. Lokhov, and A. Archakov, Metabolic profiling of human blood. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2013. 7: p. 179-186.
179. Wu, S., et al., Iou-balanced loss functions for single-stage object detection. Pattern Recognition Letters, 2022. 156: p. 96-103.
180. Lukac, R. and K.N. Plataniotis, Single-sensor camera image compression. IEEE Transactions on Consumer Electronics, 2006. 52(2): p. 299-307.
181. Balaji, S., Binary Image classifier CNN using TensorFlow, in Medium. 2020.
182. Zheng, J., et al., Nonlinear dynamic soft sensor development with a supervised hybrid CNN-LSTM network for industrial processes. ACS omega, 2022. 7(19): p. 16653-16664.
183. Xiao Ou, T.Y.K., Chen, Fundamentals of Artificial Intelligence. 2018: The Commercial Press. 169.
184. Zafar, A., et al., A comparison of pooling methods for convolutional neural networks. Applied Sciences, 2022. 12(17): p. 8643.
185. Muraki, R., et al., Automated detection scheme for acute myocardial infarction using convolutional neural network and long short-term memory. PloS one, 2022. 17(2): p. e0264002.
186. Rahimzadeh, M., et al., Wise-srnet: A novel architecture for enhancing image classification by learning spatial resolution of feature maps. Pattern Analysis and Applications, 2024. 27(2): p. 30.
187. Yuheng, S. and Y. Hao, Image segmentation algorithms overview. arXiv preprint arXiv:1707.02051, 2017.
188. Kumar, S.N., A.L. Fred, and P.S. Varghese, An overview of segmentation algorithms for the analysis of anomalies on medical images. Journal of Intelligent Systems, 2019. 29(1): p. 612-625.
189. Muhammad, K., et al., Vision-based semantic segmentation in scene understanding for autonomous driving: Recent achievements, challenges, and outlooks. IEEE Transactions on Intelligent Transportation Systems, 2022. 23(12): p. 22694-22715.
190. Alokasi, H. and M.B. Ahmad, Deep learning-based frameworks for semantic segmentation of road scenes. Electronics, 2022. 11(12): p. 1884.
191. de Carvalho, O.L.F., et al., Panoptic segmentation meets remote sensing. Remote Sensing, 2022. 14(4): p. 965.
192. Garnot, V.S.F. and L. Landrieu. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. in Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
193. Krizhevsky, A., I. Sutskever, and G.E. Hinton, Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012. 25.
194. Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
195. He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
196. Wightman, R., H. Touvron, and H. Jégou, Resnet strikes back: An improved training procedure in timm. arXiv preprint arXiv:2110.00476, 2021.
197. Koonce, B. and B. Koonce, ResNet 50. Convolutional neural networks with swift for tensorflow: image recognition and dataset categorization, 2021: p. 63-72.
198. Ren, S., et al., Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 2015. 28.
199. Redmon, J., et al. You only look once: Unified, real-time object detection. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
200. Tan, M., R. Pang, and Q.V. Le. Efficientdet: Scalable and efficient object detection. in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.
201. Song, S., et al., EfficientDet for fabric defect detection based on edge computing. Journal of Engineered Fibers and Fabrics, 2021. 16: p. 15589250211008346.
202. Saleh, M.A., et al., Computer-Vision-Based Statue Detection with Gaussian Smoothing Filter and EfficientDet. Sustainability, 2022. 14(18): p. 11413.
203. Long, J., E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
204. Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. 2015. Springer.
205. He, K., et al. Mask r-cnn. in Proceedings of the IEEE international conference on computer vision. 2017.
206. Jiang, P., et al., A Review of Yolo algorithm developments. Procedia computer science, 2022. 199: p. 1066-1073.
207. Redmon, J. and A. Farhadi. YOLO9000: better, faster, stronger. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
208. Redmon, J. and A. Farhadi, Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
209. Mao, Q.-C., et al., Mini-YOLOv3: real-time object detector for embedded applications. Ieee Access, 2019. 7: p. 133529-133538.
210. Bochkovskiy, A., C.-Y. Wang, and H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.
211. Wang, C.-Y., et al. CSPNet: A new backbone that can enhance learning capability of CNN. in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020.
212. Sohan, M., et al. A Review on YOLOv8 and Its Advancements. in International Conference on Data Intelligence and Cognitive Informatics. 2024. Springer.
213. Xiao, B., M. Nguyen, and W.Q. Yan, Fruit ripeness identification using YOLOv8 model. Multimedia Tools and Applications, 2024. 83(9): p. 28039-28056.
214. Pedro, J., Detailed Explanation of YOLOv8 Architecture — Part 1, in Medium. 2023.
215. Lee, J.H. and S.J. You, Balancing Privacy and Accuracy: Exploring the Impact of Data Anonymization on Deep Learning Models in Computer Vision. IEEE Access, 2024.
校內:2029-08-06公開