簡易檢索 / 詳目顯示

研究生: 郭亦詠
Kuo, Yi-Yong
論文名稱: 含甘露醣之醣胜肽抗菌分子的前導合成研究
Model studies toward the preparation of mannopeptimycins
指導教授: 鄭偉杰
Cheng, Wei-Chieh
共同指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 120
中文關鍵詞: 抗生素胺基酸醣肽分子雙醣
外文關鍵詞: antibiotics, amino acid, glycopeptide, disaccharide
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Mannopeptimycins是一種醣肽分子的抗生素,對於抗藥性金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA) 和抗萬古黴素腸球菌 (vancomycin-resistant Enterococcus faecium, VRE)皆具有良好的抑制活性(MIC: 4-128 μg/mL)。可能藉由與Lipid II受質結合來抑制細胞壁生合成。由於此醣肽分子的全合成尚未發表,並且在先前片段合成的設計仍有修飾的空間,特別在兩個罕見的胺基酸:(2R, 3S, 4S)-hydroxyenduracididine和(2S, 3S, 4S)-hydroxyenduracididine的合成。因此本篇論文著重在這兩個具有三個連續的立體化學罕見胺基酸之合成設計:第一個罕見胺基酸(2R, 3S, 4S)-hydroxyenduracididine,利用對掌性內酯10為起始物,經由12個反應步驟可有效率得到目標分子,並且有良好的產率(7.2%)。第二個罕見胺基酸(2S, 3S, 4S)-hydroxyenduracididine,僅在二號碳位置的立體化學不同,可利用對掌性內酯11,藉由加入對甲苯磺酸吡啶鹽(pyridinium p-toluenesulfonate, PPTS)使其產生熱力學穩定的產物,改變二號碳位置的立體化學,再經由12個反應步驟得到目標分子,總產率3.2%。
    在合成設計上,第一種合成設計,內酯藉由氫氧化鋰開環,再經過一系列的化學轉換形成具有多種官能基保護的亞芐基 (benzylidene)中間產物,但在亞芐基之選擇性開環較不順利,因此採用第二種合成設計,內酯藉由還原形成雙羥基產物,再經由一系列的化學轉換形成亞芐基中間產物,幸運地可利用TiCl4/NaCNBH3進行選擇性開環。另一個mannopeptimycin之片段─醣肽分子,利用D-甘露糖(D-mannose)為起始物,經由10步驟得到雙醣分子,並使其形成好的醣予體(donor),在BF3•OEt2催化下與Fmoc-D-tyrosine之羥基進行醣基化得到醣肽分子。

    In this research, we aim at synthetic design of mannopeptimycin fragment including two unusual amino acids with three continuous stereocenters: (2R, 3S, 4S)-hydroxyenduracididine, (2S, 3S, 4S)-hydroxyenduracididine and D-tyrosine-linked glycan.
    The first unusual amino acid, (2R, 3S, 4S)-hydroxyenduracididine, has been achieved in twelve steps from the known chiral lactone 10. The efficiency of the synthesis is demonstrated by the high overall yield of 7.2%. The other unusual amino acid, (2S, 3S, 4S)-hydroxyenduracididine, an epimer of the first one, has been synthesized in twelve steps from the chiral lactone 25 with overall yield of 3.2%. The chiral lactone 25, a thermodynamic product was prepared by adding pyridinium p-toluenesulfonate from lactone 11.
    The key transformation of the synthetic route is selective benzylidene ring opening. Fortunately, the selective ring opening of benzylidene was obtained by using TiCl4/NaCNBH3.
    The design of the other mannopeptimycin fragment, D-tyrosine-linked glycan, by preparing the disaccharide in ten steps from D-mannose. BF3•OEt2-catalyzed glycosylation was achieved with Fmoc-D-tyrosine to afford the D-tyrosine-linked glycan.

    目錄 摘要 I Extended Abstract II 誌謝 VII 目錄 IX 圖目錄 XI 表目錄 XII 流程目錄 XIII 中英文對照表 XIV 簡稱語對照 XVI 第一章 緒論 1 1.1 簡介及背景 1 1.2 Mannopeptimycin主架構及分類 2 1.3細胞壁生合成過程及mannopeptimycin作用位置 3 1.4 Mannopeptimycin片段合成介紹 5 1.4.1 醣肽分子及雙醣分子的合成 5 1.4.2 Hydroxyenduracididines的合成 6 1.5 研究目的與動機 8 第二章 結果與討論 9 2.1 Mannopeptimycin ε類似物之合成設計 9 2.2 Hydroxyenduracididines (1a, 2)的合成 11 2.2.1 Hydroxyenduracididine (1a)逆合成分析 11 2.2.2 中間產物10的製備 13 2.2.3中間產物5的製備及選擇性開環 14 2.2.4 化合物1a之合成路徑 17 2.2.5 化合物28和2之合成 22 2.2.6 化合物2之合成 25 2.3 醣肽化合物3之合成 26 2.3.1 化合物38的製備 26 2.3.2 化合物3之合成 27 2.4 光譜討論 28 2.5 總結 30 第三章 實驗部分 31 3.1 實驗藥品 31 3.2 實驗儀器 31 3.3 實驗步驟與光譜數據 32 參考文獻 57 附錄 62

    1. Olivier, K. S.; Nieuwenhze, M. S. V., Synthetic studies toward the mannopeptimycins: synthesis of orthogonally protected β-hydroxyenduracididines. Org. Lett. 2010, 12, 1680-1683.
    2. He, H., Mannopeptimycins, a novel class of glycopeptide antibiotics active against gram-positive bacteria. Appl. Microbiol. Biotechnol. 2005, 67, 444-452.
    3. Haiyin, H.; Williamson, R. T.; Bo, S.; Edmund I.; Yang, H. Y.; Subas M. S.; Guy, T. C., Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J. Am. Chem. Soc. 2002, 124, 9729-9736.
    4. Ruzin, A.; Singh, G.; Severin, A.; Yang, Y.; Dushin, R. G.; Sutherland, A. G.; Minnick, A.; Greenstein, M.; May, M. K.; Shlaes, D. M.; Bradford, P. A., Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant gram-positive bacteria. Antimicrob. Agents Chemother. 2004, 48, 728-738.
    5. (a) He, H.; Shen, B.; Petersen, P. J.; Weiss, W. J.; Yang, H. Y.; Wang, T.-Z.; Dushin, R. G.; Koehn, F. E.; Carter, G. T., Mannopeptimycin esters and carbonates, potent antibiotic agents against drug-resistant bacteria. Bioorg. Med. Chem. Lett. 2004, 14, 279-282; (b) Koehn, F. E., New strategies and methods in the discovery of natural product anti-infective agents: the mannopeptimycins. J. Med. Chem. 2008, 51, 2613-2617.
    6. Ravula, S. B.; Sanjeeva, R. G.; George, A. O., Synthetic studies toward mannopeptimycin-ε: synthesis of the O-linked tyrosine 1,4-α,α-manno,manno-pyranosyl pyranoside. Org. Lett. 2006, 8, 1605-1608.
    7. (a) Adinolfi, M.; Giacomini, D.; Iadonisi, A.; Quintavalla, A.; Valerio, S., Synthesis of the mannopeptimycin disaccharide and its conjugation with 4-alkylidene-β-lactams. Eur. J. Org. Chem. 2008, 17, 2895-2899; (b) Margaret, C. H.; Yoshito, K., Synthetic 3-O-methylmannose-containing polysaccharides (sMMPs): design and synthesis. J. Org. Chem. 2007, 72, 1931-1940.
    8. Oberthür, M.; Schüler, P.; Fischer, S.; Marsch, M., Efficient α-mannosylation of phenols: the role of carbamates as scavengers for activated glycosyl donors. Synthesis 2012, 45, 27-39.
    9. Schwörer, C. J.; Oberthür, M., Synthesis of highly functionalized amino acids: an expedient access to L- and D-β-hydroxyenduracididine derivatives. Eur. J. Org. Chem. 2009, 35, 6129-6139.
    10. (a) Yahyazadeh, A., Synthesis and characterization of D-lyxono-g-lactone. E-J. Chem. 2007, 4, 307-309; (b) Rountree, J. S. S.; Butters, T. D.; Dwek, R. A.; Fleet, G. W. J., Enantiomeric 2-acetamido-1,4-dideoxy-1,4-iminoribitols as potential pyrrolidine hexosaminidase inhibitors. C. R. Chim. 2011, 14, 126-133.
    11. Rountree, J. S.; Butters, T. D.; Wormald, M. R.; Boomkamp, S. D.; Raymond A. D.; Ikeda K., Evinson, E. L.; Nash, R. J.; Fleet, G. W. J., Design, synthesis, and biological evaluation of enantiomeric β-N-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sndhoff disease. ChemMedChem 2009, 4, 378-392.
    12. McFadden, J. M.; Thupari, J. N.; Pinn, M. L.; Vadlamudi, A.; Miller, K. I.; Townsend, C. A., Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. J. Med. Chem. 2005, 48, 946-961.
    13. Zhang, Y. K.; Plattner, J. J.; Freund, Y. R.; Easom, E. E.; Zhou, Y.; Gut, J.; Rosenthal, P. J.; Waterson, D.; Gamo, F. J.; Angulo-Barturen, I.; Ge, M.; Li, Z.; Li, L.; Jian, Y.; Cui, H.; Wang, H.; Yang, J., Synthesis and structure-activity relationships of novel benzoxaboroles as a new class of antimalarial agents. Bioorg. Med. Chem. Lett. 2011, 21, 644-651.
    14. Limbach, M.; Dalai, S.; Janssen, A.; Es-Sayed, M.; Magull, J. R., Addition of indole to methyl 2-chloro-2-cyclopropylideneacetate en route to Spirocyclopropanated Analogues of Demethoxyfumitremorgine C and Tadalafil. Eur. J. Org. Chem. 2005, 3, 610-617.
    15. Godfrey, A. G.; Hay L. J.; Peters, M.; McCarthy, J. R., Application of the dakin-west reaction for the synthesis of oxazole-containing dual PPAR agonists. J. Org. Chem. 2003, 68, 2623-2632.
    16. LevaUet, C.; Lerpiniere, J.; Ko, S. Y., The HgCl2-promoted guanylation reaction: the scope and limitations. Tetrahedron 1997, 53, 5291-5304.
    17. (a) Parameswar, A. R.; Hawkins, J. A.; Mydock, L. K.; Sands, M. S.; Demchenko, A. V., Concise synthesis of the unnatural sphingosine and psychosine enantiomer. Eur. J. Org. Chem. 2010, 17, 3269-3274; (b) Sabitha, G.; Rao, A. S.; Yadav, J. S., Synthesis of the C1-C25 southern domain of spirastrellolides B and F. Org. Biomol. Chem. 2013, 11, 7218-7231.
    18. Ravinder Mettu, R.; Thatikonda, N. R.; Olusegun, O. S.; Vishvakarma, R.; Vaidya, J. R. Stereoselective synthesis of N,O,O,O-tetraacetyl-D-ribophytosphingosine, N,O,O-triacetyl-D-erythro-sphingosine and N,O,O-triacetylsphingonine from a common chiral intermediate derived from D-mannitol. Arkivoc 2012, 5, 421-436.
    19. (a) Hobley, G.; Stuttle, K.; Wills, M., Studies of intramolecular alkylidene carbene reactions; an approach to heterocyclic nucleoside bases. Tetrahedron 2003, 59, 4739-4748; (b) Kagawa, N.; Toyota, M., Convergent total synthesis of (+)-Mycalamide A. J. Org. Chem. 2006, 71, 6796-6805.
    20. Mulzer, J.; Buschmann, J.; Lehmann, C.; Luger, P., Total synthesis of 9-dihydroerythronolide B derivatives and of erythronolide B. J. Am. Chem. Soc. 1991, 113, 910-923.
    21. Mercer, T. B.; Jenkinson, S. F.; Bartholomew, B.; Nash, R. J.; Miyauchi, S.; Kato, A.; Fleet, G. W. J., Looking glass inhibitors: both enantiomeric N-benzyl derivatives of 1,4-dideoxy-1,4-imino-d-lyxitol [a potent competitive inhibitor of α-d-galactosidase] and of 1,4-dideoxy-1,4-imino-l-lyxitol [a weak competitive inhibitor of α-d-galactosidase] inhibit naringinase, an α-l-rhamnosidase competitively. Tetrahedron: Asymmetry 2009, 20, 2368-2373.
    22. Hirata, Y.; Nakamura, S.; Watanabe, N.; Kataoka, O.; Kurosaki, T.; Anada, M.; Kitagaki, S.; Shiro, M.; Hashimoto, S., Total syntheses of zaragozic acids A and C by a carbonyl ylide cycloaddition strategy. Chem. Eur. J. 2006, 12, 8898-8925.
    23. (a) Daragics, K.; Fügedi, P., Regio- and chemoselective reductive cleavage of 4,6-O-benzylidene-type acetals of hexopyranosides using BH3•THF–TMSOTf. Tetrahedron Lett. 2009, 50, 2914-2916; (b) Daragics, K.; Szabo, P.; Fugedi, P., Some observations on the reductive ring opening of 4, 6-O-benzylidene acetals of hexopyranosides with the borane trimethylamine-aluminium chloride reagent. Carbohydr. Res. 2011, 346, 1633-7.
    24. Shie, C. R.; Wang, C. C.; Hung, S. C., Metal trifluoromethanesulfonate-catalyzed regioselective reductive ring opening of benzylidene acetals. J. Chin. Chem. Soc. 2009, 56, 510-523.
    25. Lee, E.; Yun, J. S.; Total synthesis of Dactomelynes. J. Am. Chem. Soc. 1995, 117, 8017-8018.
    26. Dettwiler, J. E.; Lubell, W. D., Serine as chiral educt for the practical synthesis of enantiopure N-protected β-hydroxyvaline. J. Org. Chem. 2002, 68, 177-179.
    27. Best, D.; Wang, C.; Weymouth-Wilson, A. C.; Clarkson, R. A.; Wilson, F. X.; Nash, R. J.; Miyauchi, S.; Kato, A.; Fleet, G. W. J., Looking glass inhibitors: scalable syntheses of DNJ, DMDP, and (3R)-3-hydroxy-l-bulgecinine from D-glucuronolactone and of L-DNJ, L-DMDP, and (3S)-3-hydroxy-d-bulgecinine from L-glucuronolactone. DMDP inhibits β-glucosidases and β-galactosidases whereas L-DMDP is a potent and specific inhibitor of α-glucosidases. Tetrahedron: Asymmetry 2010, 21, 311-319.
    28. Field, R. A.; Kartha, K. P. R.; Iodine: A versatile reagent in carbohydrate chemistry IV. per-O-acetylation, regioseleetive acylation and acetolysis. Tetrahedron 1997, 53, 11753-11766.
    29. Walvoort, M. T. C.; Witte, W.; van Dijk, J.; Dinkelaar, J.; Lodder, G.; Overkleeft, H. S.; Codée, J. D. C.; van der Marel, G. A., Mannopyranosyl uronic acid donor reactivity. Org. Lett. 2011, 13, 4360-4363.
    30. Wang, Y.; Zhang, L. H.; Ye, X. S., A four-component one-pot synthesis of α-gal pentasaccharide. Org. Lett. 2004, 6, 4415-4417.
    31. Crich, D.; Li, W.; Li, H., Direct chemical synthesis of the β-Mannans:  linear and block syntheses of the alternating β-(1→3)-β-(1→4)-mannan common to Rhodotorula glutinis, Rhodotorula mucilaginosa, and Leptospira biflexa. J. Am. Chem. Soc. 2004, 126, 15081-15086.
    32. Saha, S. L.; Hornback, W. J.; Aikins, J. A., Synthesis of an orthogonally protected precursor to the glycan repeating unit of the bacterial cell wall. Org. Lett. 2001, 3, 3575-3577.

    下載圖示 校內:2015-09-11公開
    校外:2017-09-11公開
    QR CODE