簡易檢索 / 詳目顯示

研究生: 李婕寧
Li, Jie-Ning
論文名稱: HIF-1α在乳癌中調控的微小RNA切割複合體功能性轉變
HIF-1α modulates functional conversion of small RNA processing complexes in breast cancer
指導教授: 陳百昇
Chen, Pai-Sheng
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 113
中文關鍵詞: HIF-1αDGCR8exosome複合體微小核仁核糖核酸U50
外文關鍵詞: HIF-1α, DGCR8, exosome complex, U50
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Hypoxia-inducible factor-1 alpha (HIF-1α) 是明確定義的促癌轉錄因子,其功能為活化下游基因的表現量來促進癌症進程。DiGeorge syndrome chromosomal region 8 (DGCR8) 是一個可以參與在微小核糖核酸生合成的多功能性核醣核酸結合蛋白,最近被意外的發現可以結合其他種類的核醣核酸。微小核糖核酸表現量已經被發現在人類惡性腫瘤中呈現全面性的降低,部分可能的解釋為其切割因子Dicer以及Drosha的表現量降低。然而,上升的DGCR8表現量在多種人類惡性腫瘤中被觀察到,卻沒有陳述其相關分子機制。核糖核酸監視系統是由演化保留度高的溶解性核糖核酸exosome複合體主導,執行核糖核酸切割以及品質管理。具功能的exosome複合體是由中心蛋白以及核糖核酸溶解性酵素組成,例如RRP6 (EXO10RRP6)。在這個研究中,我們意外地觀察到HIF-1α與DGCR8結合以促成DGCR8/RRP6複合體的組裝,並且接著抑制微小核仁核糖核酸的表現量。微小核仁核糖核酸U50是一個可以抑制KRAS所主導的腫瘤發生過程的腫瘤抑制因子,並且被發現為HIF-1α/DGCR8/Exo10RRP6複合體的重要標靶。藉由增強此核糖核酸exosome複合體,HIF-1α抑制U50表現並且促進乳癌細胞的致癌特性。我們將以DGCR8為中心的微小核糖核酸切割複合體分子轉換機制稱為‘Exoswitch’,此為HIF-1α在調控微小非編碼核糖核酸平衡中,獨立於其轉錄活性的一個重要功能。綜觀來說,我們的結果解釋了DGCR8在癌症中表現量上升的分子功能,此為需要HIF-1α促進的Exoswitch來降解腫瘤抑制性的微小核仁核糖核酸U50,最後導致增強的乳癌細胞致癌特性。

    Hypoxia-inducible factor-1 alpha (HIF-1α) has been well-defined as an oncogenic transcription factor which activates the expression of downstream genes to promote cancer progression. DiGeorge syndrome chromosomal region 8 (DGCR8), is a multifunctional RNA binding protein that participates in miRNA biogenesis and was recently discovered to unexpectedly recognize other RNA species. Global reduction of miRNAs in human malignancies have been observed, which could be partially explained by the downregulation their processing factors Dicer and Drosha. However, elevated DGCR8 level was observed in multiple types of human malignancies without demonstration of its molecular basis. RNA surveillance system is mediated by evolutionary conserved ribonucleolytic RNA exosome complex which mediates RNA processing and quality control. A functional exosome complex is composed of core proteins and ribonucleolytic enzyme, such as RRP6 (EXO10RRP6). In this study, we unexpectedly observed that HIF-1α protein interacts with DGCR8 to facilitate DGCR8/RRP6 complex assembly and subsequently downregulates snoRNA expression. The snoRNA U50, a putative tumor suppressor inhibiting KRAS-mediated tumorigenesis, was identified as a novel target for HIF-1α/DGCR8/Exo10RRP6. Through enhancing this exosome complex, HIF-1α downregulated U50 and promoted oncogenic properties of breast cancer. We termed the DGCR8-centered molecular shift between two small RNA-processing complexes as ‘Exoswitch’ which is a novel function of HIF-1α in regulating small non-coding RNA homeostasis independently of its transcriptional activity. Taken together, our results explained the molecular function of DGCR8 overexpression in cancer, which required HIF-1α-triggered Exoswitch to degrade tumor suppressive snoRNA U50, and eventually led to enhanced tumorigenic properties of breast cancer.

    中文摘要...Ⅰ Abstract...Ⅱ 致謝...Ⅲ Contents...Ⅴ List of figures...Ⅷ List of tables...Ⅺ Abbreviations...ⅪⅠ Chapter 1 - Introduction...1 A.Breast cancer occurrence...1 B.Breast cancer classification...1 C.Fundamental molecular function and regulation of HIF-1α...2 D.HIF-1α and cancers...3 E.MicroRNA biogenesis...5 F.Microprocessor complex...6 G.SnoRNAs...8 H.RNA exosome complex...10 Chapter 2 - Results...13 A.HIF-1α suppresses nuclear processing of miRNAs...13 B.HIF-1α interacts with DGCR8 in multiple cancer cell lines and human cancer tissues...15 C.HIF-1α blocks Drosha/DGCR8 complex formation through a transcription-independent manner...19 D.Enhanced binding of HIF-1α with monomer DGCR8 prevents microprocessor formation...22 E.HIF-1α triggers molecular switch to facilitate DGCR8/RRP6 complex formation...24 F.Identify substrates of HIF-1α-induced DGCR8/EXO10RRP6 complex...27 G.Functional roles of HIF-1α-triggered Exoswitch in regulating tumorigenic activities...31 H.Clinical investigations of Exoswitch in human breast cancer...34 Chapter 3 - Discussion...36 A.miRNA biogenesis modulators...36 B.The role of DGCR8 in tumorigenesis...36 C.miRNA-independent function of DGCR8...37 D.The role of RNA exosome in tumorigenesis...38 E.Non-canonical functions of HIF-1α...38 F.Switches triggered by HIF-1α...39 G.Effect of HIF-1α/DGCR8 complex to heme homeostasis ...40 H.Functional consequences of HIF-1α-triggered Exoswitch...41 Chapter 4 - Conclusion...42 Chapter 5 - Materials and methods...43 A.Cell culture...43 B.Protein extraction...43 C.Western blot...43 D.Immunoprecipitation...44 E.Total RNA extraction...44 F.Reverse transcription...45 G.Quantitated and absolute real-time PCR...45 H.Unprocessed pri-miRNAs, pre-miRNAs and snoRNA detection...46 I.Luciferase activity assay...46 J.Plasmids...46 K.Genes manipulation: Transfection and shRNAs interference assay...47 L.Growth factor treatment and hypoxic condition...47 M.MTT, cell viability assay...48 N.Colony and mammosphere forming assay...48 O.In situ Proximity Ligation Assay (PLA)...48 P.Enzyme-linked immunosorbent assay (ELISA)...49 Q.Tissue microarray...50 R.Statistical analysis...50 S.Human subjects...50 Reference...51 Figures...60 Tables...105

    References
    1. American Cancer Society, I., breast-cancer-facts-and-figures-2019-2020. 2019.
    2. Cichon, M.A., et al., Microenvironmental Influences that Drive Progression from Benign Breast Disease to Invasive Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010. 15(4): p. 389-397.
    3. Polyak, K., Is breast tumor progression really linear? Clinical Cancer Research, 2008. 14(2): p. 339-341.
    4. Dai, X., et al., Breast cancer intrinsic subtype classification, clinical use and future trends. American Journal of Cancer Research, 2015. 5(10): p. 2929-43.
    5. Domeyer, P.J. and T.N. Sergentanis, New Insights into the Screening, Prompt Diagnosis, Management, and Prognosis of Breast Cancer. Journal of Oncology, 2020. 2020: p. 8597892.
    6. Soni, S. and Y.S. Padwad, HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncologica, 2017. 56(4): p. 503-515.
    7. Wigerup, C., S. Pahlman, and D. Bexell, Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacology & Therapeutics, 2016. 164: p. 152-169.
    8. Koh, M.Y., T.R. Spivak-Kroizman, and G. Powis, HIF-1 regulation: not so easy come, easy go. Trends in Biochemical Sciences, 2008. 33(11): p. 526-534.
    9. Akanji, M.A., D. Rotimi, and O.S. Adeyemi, Hypoxia-Inducible Factors as an Alternative Source of Treatment Strategy for Cancer. Oxidative Medicine and Cellular Longevity, 2019. 2019: p. 8547846.
    10. Kuschel, A., P. Simon, and S. Tug, Functional regulation of HIF-1alpha under normoxia--is there more than post-translational regulation? Journal of Cellular Physiology, 2012. 227(2): p. 514-24.
    11. Cimmino, F., et al., HIF-1 transcription activity: HIF1A driven response in normoxia and in hypoxia. BMC Medical Genetics, 2019. 20(1): p. 37.
    12. Piret, J.P., et al., Hypoxia and CoCl2 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Experimental Cell Research, 2004. 295(2): p. 340-349.
    13. Thomas, R. and M.H. Kim, HIF-1 alpha: A key survival factor for serum-deprived prostate cancer cells. Prostate, 2008. 68(13): p. 1405-1415.
    14. Gerber, S.A. and J.S. Pober, IFN-alpha induces transcription of hypoxia-inducible factor-1 alpha to inhibit proliferation of human endothelial cells. Journal of Immunology, 2008. 181(2): p. 1052-1062.
    15. Bonello, S., et al., Reactive oxygen species activate the HIF-1 alpha promoter via a functional NF kappa B site. Arteriosclerosis Thrombosis and Vascular Biology, 2007. 27(4): p. 755-761.
    16. Cao, Y.T., et al., Tumor Cells Upregulate Normoxic HIF-1 alpha in Response to Doxorubicin. Cancer Research, 2013. 73(20): p. 6230-6242.
    17. Al Tameemi, W., et al., Hypoxia-Modified Cancer Cell Metabolism. Frontiers in Cell and Developmental Biology, 2019. 7: p. 4.
    18. Masoud, G.N. and W. Li, HIF-1 alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B, 2015. 5(5): p. 378-389.
    19. Fukuda, R., et al., Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. Journal of Biological Chemistry, 2002. 277(41): p. 38205-38211.
    20. Biswas, S., et al., Insulin regulates hypoxia-inducible factor-1alpha transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte. PLoS One, 2013. 8(4): p. e62128.
    21. Zhong, H., et al., Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Research, 2000. 60(6): p. 1541-1545.
    22. Cho, K.H., et al., A ROS/STAT3/HIF-1alpha signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion. Prostate, 2014. 74(5): p. 528-36.
    23. Cao, Y., et al., Tumor cells upregulate normoxic HIF-1alpha in response to doxorubicin. Cancer Research, 2013. 73(20): p. 6230-42.
    24. Lau, C.K., et al., An Akt/hypoxia-inducible factor-1alpha/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clinical Cancer Research, 2009. 15(10): p. 3462-71.
    25. Pezzuto, A. and E. Carico, Role of HIF-1 in Cancer Progression: Novel Insights. A Review. Current Molecular Medicine, 2018. 18(6): p. 343-351.
    26. Maimon E Hubbi, K., Daniele M Gilkes, Sergio Rey, Carmen C Wong, Weibo Luo, Deok-Ho Kim, Chi V Dang, Andre Levchenko, Gregg L Semenza, A Nontranscriptional Role for HIF-1α as a Direct Inhibitor of DNA Replication. Science signaling, 2013. 20(262): p. pp. ra10.
    27. Villa, J.C., et al., Nontranscriptional role of Hif-1alpha in activation of gamma-secretase and notch signaling in breast cancer. Cell Reports, 2014. 8(4): p. 1077-92.
    28. Vaupel, P. and A. Mayer, Hypoxia in Tumors: Pathogenesis-Related Classification, Characterization of Hypoxia Subtypes, and Associated Biological and Clinical Implications. Oxygen Transport to Tissue XXXVII, 2014. 812: p. 19-24.
    29. Campbell, E.J., et al., Activation of the hypoxia pathway in breast cancer tissue and patient survival are inversely associated with tumor ascorbate levels. Bmc Cancer, 2019. 19.
    30. Peiro, C.H.F., et al., The role of hypoxia-induced factor 1a in breast cancer. Journal of Cancer Metastasis and Treatment, 2019. 5: p. 49.
    31. H Zhong, A.M.D.M., E Laughner, M Lim, D A Hilton, D Zagzag, P Buechler, W B Isaacs, G L Semenza, J W Simons, Overexpression of Hypoxia-inducible Factor 1α in Common Human Cancers and Their Metastases. Cancer Research, 1999. 59(22): p. 5830-5.
    32. Unwith, S., et al., The potential role of HIF on tumour progression and dissemination. International Journal of Cancer, 2015. 136(11): p. 2491-2503.
    33. Lai, E.C., Two decades of miRNA biology: lessons and challenges. Rna, 2015. 21(4): p. 675-677.
    34. Bhaskaran, M. and M. Mohan, MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Veterinary Pathology, 2014. 51(4): p. 759-74.
    35. Rana, T.M., Illuminating the silence: understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology, 2007. 8(1): p. 23-36.
    36. Dalmay, T., MicroRNAs and cancer. Journal of Internal Medicine, 2008. 263(4): p. 366-375.
    37. Jakymiw, A., et al., The role of GW/P-bodies in RNA processing and silencing. Journal of Cell Science, 2007. 120(8): p. 1317-1323.
    38. Kim, B., et al., TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. Embo Journal, 2015. 34(13): p. 1801-1815.
    39. Lee, O. and V.N. Kim, Evidence that microRNA genes are transcribed by RNA polymerase II. Cell Structure and Function, 2004. 29: p. 68-68.
    40. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956): p. 415-419.
    41. Krol, J., I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 2010. 11(9): p. 597-610.
    42. Winter, J., et al., Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 2009. 11(3): p. 228-234.
    43. Zhang, H.D., et al., Single processing center models for human dicer and bacterial RNase III. Cell, 2004. 118(1): p. 57-68.
    44. MacRae, I.J., et al., Structural basis for double-stranded RNA processing by dicer. Science, 2006. 311(5758): p. 195-198.
    45. Nguyen, T.A., et al., Functional Anatomy of the Human Microprocessor. Cell, 2015. 161(6): p. 1374-1387.
    46. Quick-Cleveland, J., et al., The DGCR8 RNA-Binding Heme Domain Recognizes Primary MicroRNAs by Clamping the Hairpin. Cell Reports, 2014. 7(6): p. 1994-2005.
    47. Senturia, R., et al., Dimerization and Heme Binding Are Conserved in Amphibian and Starfish Homologues of the microRNA Processing Protein DGCR8. Plos One, 2012. 7(7).
    48. Barr, I., et al., DiGeorge Critical Region 8 (DGCR8) Is a Double-cysteine-ligated Heme Protein. Journal of Biological Chemistry, 2011. 286(19): p. 16716-16725.
    49. Senturia, R., et al., Structure of the dimerization domain of DiGeorge critical region 8. Protein Science, 2010. 19(7): p. 1354-65.
    50. Weitz, S.H., et al., Processing of microRNA primary transcripts requires heme in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(5): p. 1861-1866.
    51. Faller, M., et al., Heme is involved in microRNA processing. Nature Structural & Molecular Biology, 2007. 14(1): p. 23-29.
    52. Partin, A.C., et al., Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs. Nature Communications, 2018. 9.
    53. Ali Syeda, Z., et al., Regulatory Mechanism of MicroRNA Expression in Cancer. International Journal of Molecular Sciences, 2020. 21(5).
    54. Gulyaeva, L.F. and N.E. Kushlinskiy, Regulatory mechanisms of microRNA expression. Journal of Translational Medicine, 2016. 14.
    55. Treiber, T., N. Treiber, and G. Meister, Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature Reviews Molecular Cell Biology, 2019. 20(1): p. 5-20.
    56. Shen, J. and M.C. Hung, Signaling-Mediated Regulation of MicroRNA Processing. Cancer Research, 2015. 75(5): p. 783-791.
    57. Michlewski, G. and J.F. Caceres, Post-transcriptional control of miRNA biogenesis. Rna, 2019. 25(1): p. 1-16.
    58. Wang, X.W., et al., c-Myc modulates microRNA processing via the transcriptional regulation of Drosha. Scientific Reports, 2013. 3.
    59. Kawai, S. and A. Amano, BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. Journal of Cell Biology, 2012. 197(2): p. 201-208.
    60. Suzuki, H.I., et al., Modulation of microRNA processing by p53. Nature, 2009. 460(7254): p. 529-U111.
    61. Davis, B.N., et al., SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 2008. 454(7200): p. 56-U2.
    62. Davis, B.N., et al., Smad Proteins Bind a Conserved RNA Sequence to Promote MicroRNA Maturation by Drosha. Molecular Cell, 2010. 39(3): p. 373-384.
    63. Trabucchi, M., et al., The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 2009. 459(7249): p. 1010-U144.
    64. Trabucchi, M., et al., KSRP PROMOTES THE MATURATION OF A GROUP OF miRNA PRECURSORS. Regulation of Micrornas, 2010. 700: p. 36-42.
    65. Ye, P.Y., et al., An mTORC1-Mdm2-Drosha Axis for miRNA Biogenesis in Response to Glucose- and Amino Acid-Deprivation. Molecular Cell, 2015. 57(4): p. 708-720.
    66. Woo, J.S. and V.N. Kim, MeCP2 Caught Moonlighting as a Suppressor of MicroRNA Processing. Developmental Cell, 2014. 28(5): p. 477-478.
    67. Cheng, T.L., et al., MeCP2 Suppresses Nuclear MicroRNA Processing and Dendritic Growth by Regulating the DGCR8/Drosha Complex. Developmental Cell, 2014. 28(5): p. 547-560.
    68. Mori, M., et al., Hippo Signaling Regulates Microprocessor and Links Cell-Density-Dependent miRNA Biogenesis to Cancer. Cell, 2014. 156(5): p. 893-906.
    69. Miska, E.A., Microrna expression profiles classify human cancers. Cytometry Part B-Clinical Cytometry, 2007. 72b(2): p. 126-126.
    70. Lin, S.B. and R.I. Gregory, MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer, 2015. 15(6): p. 321-333.
    71. Massenet, S., E. Bertrand, and C. Verheggen, Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol, 2017. 14(6): p. 680-692.
    72. Bratkovic, T., J. Bozic, and B. Rogelj, Functional diversity of small nucleolar RNAs. Nucleic Acids Res, 2020. 48(4): p. 1627-1651.
    73. Kufel, J. and P. Grzechnik, Small Nucleolar RNAs Tell a Different Tale. Trends in Genetics, 2019. 35(2): p. 104-117.
    74. Kass, S., et al., The U3 Small Nucleolar Ribonucleoprotein Functions in the 1st Step of Preribosomal Rna Processing. Cell, 1990. 60(6): p. 897-908.
    75. Watkins, N.J. and M.T. Bohnsack, The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdisciplinary Reviews-Rna, 2012. 3(3): p. 397-414.
    76. Granneman, S., et al., Role of pre-rRNA base pairing and 80S complex formation in subnucleolar localization of the U3 snoRNP. Molecular and Cellular Biology, 2004. 24(19): p. 8600-8610.
    77. Peculis, B.A. and J.A. Steitz, Disruption of U8 Nucleolar Snrna Inhibits 5.8s and 28s Ribosomal-Rna Processing in the Xenopus-Oocyte. Cell, 1993. 73(6): p. 1233-1245.
    78. Fournier, W.Q.L.a.M.J., U14 base-pairs with 18S rRNA a novel snoRNA interaction required for rRNA processing. GENES & & develpoment, 1995. 9: p. 2433-2443.
    79. Cavaille, J., et al., Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(26): p. 14311-14316.
    80. Burns, C.M., et al., Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature, 1997. 387(6630): p. 303-308.
    81. Vitali, P., et al., ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. Journal of Cell Biology, 2005. 169(5): p. 745-753.
    82. Falaleeva, M., et al., SNORD116 and SNORD115 change expression of multiple genes and modify each other's activity. Gene, 2015. 572(2): p. 266-273.
    83. Falaleeva, M., et al., Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(12): p. E1625-E1634.
    84. Gong, J., et al., A Pan-cancer Analysis of the Expression and Clinical Relevance of Small Nucleolar RNAs in Human Cancer. Cell Reports, 2017. 21(7): p. 1968-1981.
    85. Liang, J.N., et al., Small Nucleolar RNAs: Insight Into Their Function in Cancer. Frontiers in Oncology, 2019. 9.
    86. Mannoor, K., J.P. Liao, and F. Jiang, Small nucleolar RNAs in cancer. Biochimica Et Biophysica Acta-Reviews on Cancer, 2012. 1826(1): p. 121-128.
    87. Stepanov, G.A., et al., Regulatory Role of Small Nucleolar RNAs in Human Diseases. Biomed Research International, 2015. 2015.
    88. Thorenoor, N. and O. Slaby, Small nucleolar RNAs functioning and potential roles in cancer. Tumor Biology, 2015. 36(1): p. 41-53.
    89. Tanaka, R., et al., Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma. Genes to Cells, 2000. 5(4): p. 277-287.
    90. Dong, X.Y., et al., Implication of snoRNA U50 in human breast cancer. Journal of Genetics and Genomics, 2009. 36(8): p. 447-454.
    91. Dong, X.Y., et al., SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Human Molecular Genetics, 2008. 17(7): p. 1031-1042.
    92. Siprashvili, Z., et al., The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nature Genetics, 2016. 48(1): p. 53-+.
    93. Askarian-Amiri, M.E., et al., SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. Rna, 2011. 17(5): p. 878-891.
    94. Gee, H.E., et al., The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. British Journal of Cancer, 2011. 104(7): p. 1168-77.
    95. Mei, Y.P., et al., Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene, 2012. 31(22): p. 2794-2804.
    96. Chen, L., et al., SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma. Scientific Reports, 2015. 5: p. 8588.
    97. Schmid, M. and T.H. Jensen, The exosome: a multipurpose RNA-decay machine. Trends in Biochemical Sciences, 2008. 33(10): p. 501-510.
    98. Kilchert, C., S. Wittmann, and L. Vasiljeva, The regulation and functions of the nuclear RNA exosome complex. Nature Reviews Molecular Cell Biology, 2016. 17(4): p. 227-239.
    99. Zinder, J.C. and C.D. Lima, Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes & Development, 2017. 31(2): p. 88-100.
    100. Schmid, M. and T.H. Jensen, Controlling nuclear RNA levels. Nature Reviews Genetics, 2018. 19(8): p. 518-529.
    101. Ogami, K., Y. Chen, and J.L. Manley, RNA surveillance by the nuclear RNA exosome: mechanisms and significance. Noncoding RNA, 2018. 4(1).
    102. Lai, H.H., et al., HIF-1 alpha promotes autophagic proteolysis of Dicer and enhances tumor metastasis. Journal of Clinical Investigation, 2018. 128(2): p. 625-643.
    103. Witteveldt, J., A. Ivens, and S. Macias, Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response. Cell Reports, 2018. 23(11): p. 3275-3285.
    104. Conrad, T., et al., Microprocessor Activity Controls Differential miRNA Biogenesis In Vivo. Cell Reports, 2014. 9(2): p. 542-554.
    105. Louloupi, A., et al., Microprocessor dynamics shows co- and post-transcriptional processing of pri-miRNAs. Rna, 2017. 23(6): p. 892-898.
    106. Soderberg, O., et al., Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nature Methods, 2006. 3(12): p. 995-1000.
    107. Hayashi, Y., et al., Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1alpha in cancer. Cancer Science, 2019. 110(5): p. 1510-1517.
    108. Macias, S., et al., DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nature Structural & Molecular Biology, 2012. 19(8): p. 760-766.
    109. Macias, S., et al., DGCR8 Acts as an Adaptor for the Exosome Complex to Degrade Double-Stranded Structured RNAs. Molecular Cell, 2015. 60(6): p. 873-885.
    110. Kerppola, T.K., Biomolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annual Review of Biophysics, 2008. 37: p. 465-487.
    111. Michel, C.I., et al., Small Nucleolar RNAs U32a, U33, and U35a Are Critical Mediators of Metabolic Stress. Cell Metabolism, 2011. 14(1): p. 33-44.
    112. Brandis, K.A., et al., Box C/D Small Nucleolar RNA (snoRNA) U60 Regulates Intracellular Cholesterol Trafficking. Journal of Biological Chemistry, 2013. 288(50): p. 35703-35713.
    113. Saxena, T., et al., Combined miRNA and mRNA Signature Identifies Key Molecular Players and Pathways Involved in Chikungunya Virus Infection in Human Cells. Plos One, 2013. 8(11).
    114. Kawahara, Y. and A. Mieda-Sato, TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(9): p. 3347-3352.
    115. Ouyang, H.W., et al., The RNA binding protein EWS is broadly involved in the regulation of pri-miRNA processing in mammalian cells. Nucleic Acids Research, 2017. 45(21): p. 12481-12495.
    116. Kim, K.Y., et al., A multifunctional protein EWS regulates the expression of Drosha and microRNAs. Cell Death and Differentiation, 2014. 21(1): p. 136-145.
    117. Tang, X., et al., Glycogen synthase kinase 3 beta (GSK3beta) phosphorylates the RNAase III enzyme Drosha at S300 and S302. PLoS One, 2011. 6(6): p. e20391.
    118. Hong, S.G., et al., Signaling by p38 MAPK Stimulates Nuclear Localization of the Microprocessor Component p68 for Processing of Selected Primary MicroRNAs. Science Signaling, 2013. 6(266).
    119. Piskounova, E., et al., Lin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms. Cell, 2011. 147(5): p. 1066-1079.
    120. Rupaimoole, R., et al., Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nature Communications, 2014. 5.
    121. Ambs, S., et al., Genomic profiling of MicroRNA and messenger RNA reveals deregulated MicroRNA expression in prostate cancer. Cancer Research, 2008. 68(15): p. 6162-6170.
    122. Peric, D., K. Chvalova, and G. Rousselet, Identification of microprocessor-dependent cancer cells allows screening for growth-sustaining micro-RNAs. Oncogene, 2012. 31(16): p. 2039-2048.
    123. Guo, Y.Q., et al., Silencing the Double-Stranded RNA Binding Protein DGCR8 Inhibits Ovarian Cancer Cell Proliferation, Migration, and Invasion. Pharmaceutical Research, 2015. 32(3): p. 769-778.
    124. Belair, C.D., et al., DGCR8 is essential for tumor progression following PTEN loss in the prostate. Embo Reports, 2015. 16(9): p. 1219-1232.
    125. Marinaro, F., et al., MicroRNA-independent functions of DGCR8 are essential for neocortical development and TBR1 expression. Embo Reports, 2017. 18(4): p. 603-618.
    126. Cirera-Salinas, D., et al., Noncanonical function of DGCR8 controls mESC exit from pluripotency. Journal of Cell Biology, 2017. 216(2): p. 355-366.
    127. Graham, A.C., D.L. Kiss, and E.D. Andrulis, Core Exosome-independent Roles for Rrp6 in Cell Cycle Progression. Molecular Biology of the Cell, 2009. 20(8): p. 2242-2253.
    128. Jamin, S.P., et al., EXOSC10/Rrp6 is post-translationally regulated in male germ cells and controls the onset of spermatogenesis. Scientific Reports, 2017. 7(1): p. 15065.
    129. Marin-Vicente, C., et al., RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination. Journal of Cell Science, 2015. 128(6): p. 1097-107.
    130. Immenschuh, S., et al., Heme as a Target for Therapeutic Interventions. Front Pharmacol, 2017. 8: p. 146.
    131. Lee, J.W., et al., Hypoxia signaling in human diseases and therapeutic targets. Experimental & Molecular Medicine, 2019. 51(6): p. 1-13.
    132. Han, J., et al., Posttranscriptional Crossregulation between Drosha and DGCR8. Cell, 2009. 136(1): p. 75-84.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE