| 研究生: |
許喬泰 Hsu, Chiao-Tai |
|---|---|
| 論文名稱: |
應用證據權模型繪製崩塌潛感圖-以陳有蘭溪為例 Application of the Weight-of-Evidence Model in Landslide Susceptibility Mapping -an Example from Chenyulan River |
| 指導教授: |
林慶偉
Lin, Ching-Weei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 證據權模型 、崩塌潛感圖 |
| 外文關鍵詞: | Weight-evidence model, Landslide susceptibility map |
| 相關次數: | 點閱:80 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣由於地形陡峭及地勢複雜,每當豪大雨或地震觸發崩塌時,常常對山區及偏遠地區造成重大傷害。因此,如何準確地評估崩塌敏感地區成為關鍵的課題,而本研究希望藉由統計學中的證據權模型,建立可靠的崩塌潛感圖以提高預測崩塌發生的準確度。
本研究以2004年艾利颱風與2005年泰利颱風誘發陳有蘭溪集水區內崩塌為例,選取岩性、水系距離、道路距離、構造距離、坡度、坡向、高程、坡型、NDVI等研究區之崩塌參數來建構崩塌潛感圖,將上述各影響崩塌因子利用證據權重方法對各因子作權重值計算,並進行權重值加總繪出該群因子的崩塌潛感圖。
最後利用成功與預測率曲線進行驗證,在艾利事件中成功率曲線AUC值達最佳達0.864且在預測率曲線AUC值驗證後達0.8附近,而在泰利事件中成功率曲線AUC值最佳達0.841且在預測率曲線AUC值驗證後達0.78附近。顯示證據權模型對陳有蘭溪集水區內崩塌預測取得了良好的效果,且採用此方法結合地理資訊系統之分析功能,更可以客觀定量地評估各種影響因子對崩塌的影響程度。
In mountainous terrain such as Taiwan, severe landslides are commonly triggered by catastrophic earthquake and heavy rainfall brought by typhoons. Therefore, how to accurately assess landslide susceptibility becomes a crucial issue for landslide hazard mitigation in Taiwan. In this study, a statistical weight-evidence model is selected to establish a landslide susceptibility map to improve the accuracy of landslide prediction and to help the planning of landslide hazard mitigation.
In this study, landslides in the Chenyulan River watershed triggered by the Typhoon Aere in 2004 and the Typhoon Talim in 2005 were used to construct the landslide susceptibility map. Lithology, distance from landslide to river channel, distance from landslide to road, slopes gradient, slope aspects, elevations, topographic curvature, and NDVI; are used as evaluation parameters for establishment of susceptibility maps. For each parameter, a weighting value for landslide susceptibility can be derived, and the weight values of all the factors are then summed to generate the landslide susceptibility map.
The success and prediction rating curve are employed in this study to evaluate the results of the susceptibility map. In the case of the Typhoon Aere, the success rate of AUC is up to 0.864, and the prediction rate of AUC is approximately 0.8. In the case of the Typhoon Talim, the success rate of AUC is up to 0.841, and the prediction rate of AUC is approximately 0.78. The prediction results for both cases are in good agreement with actual landslides occurred in the Chenyoulan River Watershed. Therefore, this study illustrates that the Weighting Evidence Model is an efficiency and powerful approach to generate a reliable susceptibility map.
中文部分
王鑫(1986),中橫公路道路邊坡的地貌分析,行政院國家科學委員會研究報告編號NSC74-0414-P002-23。
王鑫(1998),地形學,初版,聯經出版社。
王文能(2000),崩塌地調查與治理規劃,行政院農業委員會水土保持局委託計畫報告。
李三畏(1984),台灣崩塌問題探討,地工技術,第七期,頁43-49。
李錫堤、潘國樑、林銘郎(2005), 山崩調查與危險度評估-山崩潛感分析之研究(3/3),經濟部中央地質調查所報告,第94-18號,頁268。
李錫堤、費立沅、陳勉銘(2010),蘭陽溪流域之山崩土石流災害潛勢分析,流域地質與坡地災害研討會。
何春蓀(1986),台灣地質概論-台灣地質圖說明書,經濟部中央地質調查所,頁169。
呂政諭(2001),「地震與颱風作用下阿里山地區公路邊坡崩壞特性之研究」,成功大學土木工程研究所碩士論文。
吳秉晃(2002),「集集地震後阿里山地區公路邊坡之崩壞行為與熱紅外線影像特性研究」,國立成功大學土木工程研究所碩士論文。
林書毅(1999),「區域性山坡穩定評估方法探討-以林口台地為例」,國立中央大學應用地質研究所碩士論文。
林彥享(2003),「運用類神經網路進行地震誘發山崩之潛感分析」,國立中央大學應用地質研究所碩士論文。
林淑媛(2003),「地形地質均質區之劃分與山崩因子探討」,國立中央大學應用地質研究所碩士論文。
林永祥(2004),「環境地質因子對國道邊坡穩定之影響-以國道三號白河至竹山路段為例」,國立成功大學資源工程學系碩士論文。
紀宗吉(1998),林肯大郡地層滑動災變原因之探討,第十八卷第一期,頁43-58。
陳凱榮(2000),「中橫公路山崩潛感分級研究-以東勢-德基為例」,國立中央大學應用地質研究所碩士論文。
陳國男(2005),「類神經網路應用於邊坡穩定分析及護坡工法之研究」,國立成功大學資源工程學系碩士論文。
張石角(1989),陽明山國家公園環境敏感區及潛在災害地區之調查研究,內政部營建屬陽明山國家公園管理處,頁11-27。
張子瑩(2002),「降雨與地震對形成崩塌區位之比較研究」,國立臺灣大學地理環境資源學研究所碩士論文。
張舜孔(2003),「類神經網路應用在阿里山公路邊坡破壞因子之分析研究」,國立成功大學土木工程學系碩士論文。
高嘉隆(2003),「台十四省道31~75K 沿線邊坡山崩潛感分析」,國立朝陽科技大學營建工程研究所碩士論文。
莊光澤(1994),「阿里山地區道路邊坡穩定性因子之探討」,國立成功大學地球科學系碩士論文。
楊智堯(1999),「類神經網路於邊坡破壞潛能分析之應用研究」,國立成功大學木工程研究所碩士論文。
詹永振(2001),「台14線公路邊坡崩塌影響因子之探討」,朝陽大學營建工程系碩士在職專班碩士論文。
廖軒吾(2000),「集集地震誘發之山崩」,國立中央大學地球物理研究所碩士論文。
劉守恆(2002),「衛星影像於崩塌地自動分類組合之研究」,國立成功大學地球科學研究所碩士論文。
潘國樑(1986),山坡地地質分析,科技圖書股份有限公司,頁67-83。
謝玉興(2003),「南部橫貫公路甲仙-天池段公路邊坡崩壞與降雨量關係研究」,國立成功大學土木工程研究所碩士論文。
謝有忠(1999),「陳有蘭溪流域土石流發育之地質控制」,國立成功大學地球科學研究所碩士論文。
蘇苗彬(1998),集水區坡地安定評估之計量分析方法,中華水土保持學報,第二十九卷第二期,頁105-114。
鐘意晴(2009),「區域性山崩潛感分析方法探討-以石門水庫集水區為例」,國立中央大學應用地質研究所碩士論文。
英文部分
Bonham-Carter, GF., Agterberg, FP., Wright DF(1988) , “Integration of geological data setsfor gold exploration in Nova Scotia,” Photogram Eng Remote Sens54,pp.1585-1592.
Bonham-Carter. GF., Agterberg. FP., Wright DF(1989) , “Weights of evidence modelling: a new approach to mapping mineral potential,” Stat Appl Earth Sci Geol Survey Can ,pp. 89- 97:171-183.
Bonham-Carter. GF. (1994), Geographic information systems for geoscientists: modelling with GIS, comp. Meth. Geos., vol. 13, Pergamon, New York, pp. 398
Cruden, M., and Varnes, D. J. (1996) , Landslide types and processes, Chapter 3 in Landslides-Investigation and Mitigation, National Research Council, USA, pp. 67-75.
Carranza. M., Hale. M. (2002), Spatial association of mineral occurrences and curvilinear geological features, Math Geol 34, pp. 203–221
Chung, CF. and Fabbri, AG. (2003) , Validation of spatial prediction models for landslide hazard mapping, Natural Hazards, pp. 451-472.
Donati, L., and Turrini, M. C. (2002), An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology : a lication to an area of the Apennines (Valnerina; Perugia, Italy), Engineering Geology, 63, pp. 277-289.
Emmanuel, J., Carranza, M, Martin Hale (2000) , Geologically constrained probabilistic mapping of gold potential, Baguio district, Philippines, Nat Resour Res, pp. 237–253.
Ives, J.D. , Bovis, M.J. (1978), “Natural hazards maps for land-use planning, San Juan Mountains, Colorado, U.S.A”, Arctic and Alpine Research, pp. 185-212.
Kienholz, H. (1977) , “Kombinierte Geomorphologische Gefahrenkarte 1:10000 von Grindelwald, Catena”, pp. 265-294..
Koukis, G. and Ziourkis, C. (1991), Slope instability phenomena in Greece: A Statistical Analysis, Bulletin of the International Association of Engineering Geology, 43, pp. 47-60.
Lee S., Choi J., Min K (2002), “Landslide susceptibility analysis and verification using the Bayesian probability model,” Environ Geol 43, pp. 120–131.
Lee S., Choi J. (2004), “Landslide susceptibility mapping using GIS and the weight-of-evidence model,” Int J Geogr Inf Sci 18, pp. 789–814.
Lee S., T. Sambath, (2006), “Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models,” Environ Geol 50, pp. 847–855.
Lee, C.T., Huang, C.C., (2008) “Statistical Approach toEarthquake-Induced Landslide Susceptibility”, Engineering Geology, 100(1-2), pp.43-58.
Mehrnoosh Jadda et al. (2009), “Landslide Susceptibility Evaluation and Factor Effect Analysis Using Probabilistic-Frequency Ratio Model,” ISSN 1450-216X Vol.33 No.4, pp.654-668.
Pearce, A. J. and O'Loughlin, C. L. (1985), “Landsliding during a M 7.7 earthquake: Influence of geology and topography,” Geology v. 13, pp. 855-858.
Ranjan Kumar Dahal et al. (2008), “GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping,” Environ Geol 54, pp. 311–324.
Tangestani, MH., Moore, F.(2001), “Porphyry copper potential mapping using the weights-of-evidence model in a GIS, northern Shahr-e-Babak, Iran,” Aust J Earth Sci 48, pp. 695–701.
Van Westen CJ, Rengers. N., Soeters. R. (2003), “Use of geomorphological information in indirect landslide susceptibility assessment,” Nat Hazard 30, pp. 399–419.
Zezere, J. L., Ferreira, A. B., and Rodrigues, M. L. (1999), Landslides in the North of Lisbon Region (Portugal): Conditioning and triggering factors, Phys. Chem. Earth (A), pp. 925-934.