| 研究生: |
林佳賢 Lin, Chia-Hsien |
|---|---|
| 論文名稱: |
聚(3-己基噻吩)薄膜電晶體之穩定性研究及其應用 Studies on the stability of poly(3-hexylthiophene) based thin film transistors and their applications |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 有機博膜電晶體 、極化效應 、聚(3-己基噻吩) |
| 外文關鍵詞: | Organic thin film transistor, dipole layer, poly(3-hexylthiophene) |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉由層層改善rr-P3HT有機薄膜電晶體的參數,藉以得到最佳化之rr-P3HT薄膜電晶體,進而研究其相關機制與應用。此研究成果分為兩個部分:
第一部分:選擇有機半導體rr-P3HT之溶劑與調變修飾層PMMA的分子量及濃度並且改善rr-P3HT成膜的後處理方式,因此,得到高效率、高穩定之rr-P3HT薄膜電晶體,此電晶體的電流開關比可達105、次臨界擺幅約1 V/dec、載子遷移率約為3×10-2 cm2/Vs。使用電容分析此元件之物理特性,發現rr-P3HT與修飾層PMMA之介面能造成極化效應(dipole effect),使得此元件之電流能夠在長時間操作下穩定且難以衰減。
第二部分:探討最佳化rr-P3HT薄膜電晶體的表面形貌,利用簡易的後處理變溫方式得到不同的形貌,並挑出兩種變化進行後續的應用實驗:氣體感應器、記憶體元件測試。由於後處理的不同,兩種元件之rr-P3HT薄膜經由原子力顯微鏡觀察出其表面形貌擁有不同大小、深度及密度的微米孔洞。此結構經由二維拉曼光譜分析以得到初步的分子排列組合之依據,後續經由氣體感應器與記憶體元件測試應用,可更進一步的探討孔洞能扮演的角色與它們真正的物理機制。
Organic thin film transistors processed on silicon dioxide (SiO2) substrates generally possess unstable electrical characteristics. This study attempted to achieve high performance and stability for regioregular poly(3-hexylthiophene) (rr-P3HT) thin film transistors (TFTs). The electrical performance of the rr-P3HT-based TFTs was significantly improved by optimizing the fabrication process of the rr-P3HT active layer and the poly(methyl methacrylate) (PMMA) gate dielectric buffer layer. The on/off ratio reached 105, the subthreshold swing was as low as ~1 V/dec, and the hole mobility was 3 × 10−2 cm2/Vs. Capacitance analysis revealed the significant dipole effects of the interface between the rr-P3HT and the PMMA. This result provides a reasonable explanation for the improved operational stability of the rr-P3HT-based TFTs.
[1] S. H. Park, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nature Photonics, 3, 297-303, 2009.
[2] Y. Zhao, “Charge transfer in organic molecules for solar cells : theoretical perspective”, Chemical Society Review, 41, 1075-1087, 2012.
[3] Y. Guo, “Functional organic field-effect transistors”, Adv. Mater, 22, 4427-4447, 2010.
[4] Y. Wen, “Recent progress in n-channel organic thin-film transistors”, Adv. Mater, 22, 1331-1345, 2010.
[5] B. B. Y. Hsu, ”Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors”, Adv. Mater, 24, 1171-1175, 2012.
[6] E. J. Feldmeier, “A color -tuneable organic light-emitting transistor”, Adv. Mater, 22, 3568-3572, 2010.
[7] Jin Wook Jeong, “The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors”, Sensors and Actuators B, 146, 40-45, 2010.
[8] Mark E. Roberts, “Influence of Molecular Structure and Film Properties on the Water-Stability and Sensor Characteristics of Organic Transistors”, Chemistry of Materials., 20, 7332–7338, 2008.
[9] Mark E. Roberts, “Water-stable organic transistors and their application in chemical and biological sensors”, PNAS, 105, 12134–12139, 2008.
[10] Luisa Torsi, “Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors”, Sensors and Actuators B, 98, 204–207, 2004.
[11] H. Jiang, “High-performance organic single-crystal field-effect transistor of indolo[3,2-b]carbazole and their potential applications in gas controlled organic memory device”, Adv. Mater, 23, 5075-5080, 2011.
[12] Matthew J. Panzer, “Polymer Electrolyte-Gated Organic Field-Effect Transistors: Low-Voltage, High-Current Switches for Organic Electronics and Testbeds for Probing Electrical Transport at High Charge Carrier Density”, J. Am. Chem. Soc., 129, 6599-6607, 2007.
[13] R. M. Glaeser, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models”, J. Chem. Phys., 44, 3797, 1966.
[14] A. Miller, “Impurity conduction at low concentrations”, Phys. Rev., 120, 745-755, 1956.
[15] D. A. Neamen, “Semiconductor physics and devices basic principles 3rd edition”, 2003.
[16] Amanda R. Murphy, “Organic Semiconducting Oligomers for Use in Thin Film Transistors”, Chem. Rev., 107, 1066–1096, 2007.
[17] T. A. Chen, “Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by rieke zinc: their characterization and solid-state properties”, J. Am. Chem. Soc., 117, 233, 1995.
[18] H. Tada, “Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures”, Journal of Applied Physics, 87, 4189-4193, 2000.
[19] Martin Brinkmann, “Structure and morphology control in thin films of regioregular poly(3-hexylthiophene)”, Journal of Polymer Science Part B: Polymer Physics, 49, 1218-1233, 2011.
[20] R. Joseph Kline, “Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight”, Macromolecules, 38, 3312-3319, 2005.
[21] Dean M. DeLongchamp, “Variations in Semiconducting Polymer Microstructure and Hole Mobility with Spin-Coating Speed”, Chem. Mater, 17, 5610, 2005.
[22] H. Sirringhaus, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, 401, 685-688, 1999.
[23] Yan Guo, “Interfacial Interactions between Poly(3-hexylthiophene) and Substrates”, Macromolecules, 46, 2733–2739, 2013.
[24] Brendan O'Connor, “Anisotropic Structure and Charge Transport in Highly Strain-Aligned Regioregular Poly(3-hexylthiophene)”, Advanced Functional Materials, 21, 3697–3705, 2011.
[25] R.J. Kline, “Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight”, Adv. Mater, 15, 1519–1522, 2003.
[26] Jui-Fen Chang, “Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents”, Chem. Mater., 16, 4772–4776, 2004.
[27] Kunjithapatham Sethuraman, “Performance of poly(3-hexylthiophene) organic field-effect transistors on cross-linked poly(4-vinyl phenol) dielectric layer and solvent effects”, Appl. Phys. Lett., 92, 183302, 2008.
[28] Yanmin Sun, “Polythiophene-based field-effect transistors with enhanced air stability”, Organic Electronics, 11, 351–355, 2008.
[29] D. V. Lang, “Bias-dependent generation and quenching of defects in pentacene”, Phys Rev Lett., 93, 076601, 2004.
[30] M. J. Chow, “Effects of mechanical strain on amorphous silicon thin-film transistor electrical stability”, Appl. Phys. Lett, 102, 233509, 2013.
[31] S. G. J. Mathijssen, “Scanning Kelvin probe microscopy on organic field-effect transistors during gate bias stress”, Appl. Phys. Lett, 90, 192104, 2007.
[32] Zongpeng Zhu, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications”, Physica E, 59, 83–87, 2014.
[33] B. Crone, “Electronic sensing of vapors with organic transistors”, Appl. Phys. Lett. , 78, 2229, 2001.
[34] Jia Huang, “Hydroxy-Terminated Organic Semiconductor-Based Field-Effect Transistors for Phosphonate Vapor Detection”, J. Am. Chem. Soc., 129, 9366–9376, 2007.
[35] Hsiao-Wen Zan, “Porous Organic TFTs for the Applications on Real-Time and Sensitive Gas Sensors”, Electron Device Letters, IEEE, 32, 1143-1145, 2011.
[36] Dai MZ, “Highly sensitive ammonia sensor with organic vertical nanojunctions for noninvasive detection of hepatic injury”, Anal Chem., 85, 3110-3117, 2013.
[37] H. Yang, “Pentacene Nanostructures on Surface Hydrophobicity Controlled Polymer/SiO2 Bilayer Gate-Dielectrics”, Adv. Mater, 19, 2868–2872, 2007.
[38] Kobayashi S, “Control of carrier density by self-assembled monolayers in organic field-effect transistors”, Nat Mater, 3, 317-322, 2004.
[39] S. J. Zilker, “Bias stress in organic thin-film transistors and logic gates”, Appl. Phys. Lett., 79, 1124, 2001.
[40] Chengang Feng, “Influence of trapping states at the dielectric–dielectric interface on the stability of organic field-effect transistors with bilayer gate dielectric”, Organic Electronics, 12, 1304–1313, 2011.
[41] I. H. Campbell, “Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers”, Phys. Rev. B, 54, 20, 1996.
[42] G. Louarn, “Raman spectroscopic studies of regioregular poly(3-alkylthiophenes)”, J. Phys. Chem, 100, 12532, 1996.
[43] S. Lefrant, “Structural properties of some conducting polymers and carbon nanotubes investigated by SERS spectroscopy”, Synth. Met, 100, 13, 1999.
[44] M. Baibarac, “SERS spectra of poly(3-alkylthiophenes) in oxidized and unoxidized states”, J. Raman Spectrosc, 29, 825, 1998.
[45] G.Zerbi, “Thermochromism in polyalkylthiophenes: molecular aspects from vibrational spectroscopy”, J. Chem. Phys., 97, 4646, 1991.
校內:2019-08-08公開