簡易檢索 / 詳目顯示

研究生: 林佳賢
Lin, Chia-Hsien
論文名稱: 聚(3-己基噻吩)薄膜電晶體之穩定性研究及其應用
Studies on the stability of poly(3-hexylthiophene) based thin film transistors and their applications
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 有機博膜電晶體極化效應聚(3-己基噻吩)
外文關鍵詞: Organic thin film transistor, dipole layer, poly(3-hexylthiophene)
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由層層改善rr-P3HT有機薄膜電晶體的參數,藉以得到最佳化之rr-P3HT薄膜電晶體,進而研究其相關機制與應用。此研究成果分為兩個部分:
    第一部分:選擇有機半導體rr-P3HT之溶劑與調變修飾層PMMA的分子量及濃度並且改善rr-P3HT成膜的後處理方式,因此,得到高效率、高穩定之rr-P3HT薄膜電晶體,此電晶體的電流開關比可達105、次臨界擺幅約1 V/dec、載子遷移率約為3×10-2 cm2/Vs。使用電容分析此元件之物理特性,發現rr-P3HT與修飾層PMMA之介面能造成極化效應(dipole effect),使得此元件之電流能夠在長時間操作下穩定且難以衰減。
    第二部分:探討最佳化rr-P3HT薄膜電晶體的表面形貌,利用簡易的後處理變溫方式得到不同的形貌,並挑出兩種變化進行後續的應用實驗:氣體感應器、記憶體元件測試。由於後處理的不同,兩種元件之rr-P3HT薄膜經由原子力顯微鏡觀察出其表面形貌擁有不同大小、深度及密度的微米孔洞。此結構經由二維拉曼光譜分析以得到初步的分子排列組合之依據,後續經由氣體感應器與記憶體元件測試應用,可更進一步的探討孔洞能扮演的角色與它們真正的物理機制。

    Organic thin film transistors processed on silicon dioxide (SiO2) substrates generally possess unstable electrical characteristics. This study attempted to achieve high performance and stability for regioregular poly(3-hexylthiophene) (rr-P3HT) thin film transistors (TFTs). The electrical performance of the rr-P3HT-based TFTs was significantly improved by optimizing the fabrication process of the rr-P3HT active layer and the poly(methyl methacrylate) (PMMA) gate dielectric buffer layer. The on/off ratio reached 105, the subthreshold swing was as low as ~1 V/dec, and the hole mobility was 3 × 10−2 cm2/Vs. Capacitance analysis revealed the significant dipole effects of the interface between the rr-P3HT and the PMMA. This result provides a reasonable explanation for the improved operational stability of the rr-P3HT-based TFTs.

    中文摘要 I Abstract II 致謝 VII 表目錄 XII 圖目錄 XIII 第一章 有機薄膜電晶體簡介 1 1-1 有機光電元件之發展 1 1-2有機半導體材料 2 1-3有機半導體傳輸機制 3 1-4有機薄膜電晶體之元件結構與運作原理 4 1-5有機薄膜電晶體之載子傳輸理論與公式 5 1-6研究動機 8 第二章 實驗方法與分析工具 14 2-1 實驗材料 14 2-1-1 有機半導體材料與介紹 14 2-1-2 高分子絕緣材料 15 2-1-3 二氧化矽絕緣材料 15 2-1-4 有機溶劑 15 2-2 元件製程 16 2-2-1 基板清洗 16 2-2-2 溶劑配製 16 2-2-3 旋轉塗佈修飾層 17 2-2-4 熱蒸鍍成長金屬電極 17 2-2-5旋轉塗佈有機半導體層 17 2-3 實驗相關儀器 18 2-3-1電性分析 18 2-3-2 原子力顯微鏡 18 2-3-3 二維拉曼光譜儀(Mapping Raman) 19 2-3-4 氮氣量測控制閥 20 第三章 高穩定度之有機高分子薄膜電晶體製程與電性討論 26 3-1 前言 26 3-2 實驗方法 28 3-3 結果與討論 28 3-3-1 選擇有機高分子半導體(rr-P3HT)的溶劑 28 3-3-2 選擇適當的分子量與濃度之修飾層PMMA 29 3-3-3 調控有機半導體層rr-P3HT的製程條件 30 3-4 最佳化之有機高分子電晶體的元件電特性量測與分析 31 3-4-1 最佳化之有機高分子電晶體的元件電流-時間關係圖量測 32 3-4-2最佳化之有機高分子電晶體的元件電容分析 33 3-4-3 金屬功函數與極化效應 35 3-5 結語 37 第四章 高分子有機薄膜電晶體表面微結構之應用與分析 68 4-1 前言 68 4-2 實驗方法 69 4-3 結果與討論 70 4-3-1有機半導體層rr-P3HT的表面微結構探討分析 70 4-3-2元件對氮氣感應能力 72 4-3-3元件之記憶體能力測試 73 4-4 結語 75 第五章 總結與未來展望 93 總結 93 未來展望 94 Reference 96

    [1] S. H. Park, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nature Photonics, 3, 297-303, 2009.

    [2] Y. Zhao, “Charge transfer in organic molecules for solar cells : theoretical perspective”, Chemical Society Review, 41, 1075-1087, 2012.

    [3] Y. Guo, “Functional organic field-effect transistors”, Adv. Mater, 22, 4427-4447, 2010.

    [4] Y. Wen, “Recent progress in n-channel organic thin-film transistors”, Adv. Mater, 22, 1331-1345, 2010.

    [5] B. B. Y. Hsu, ”Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors”, Adv. Mater, 24, 1171-1175, 2012.

    [6] E. J. Feldmeier, “A color -tuneable organic light-emitting transistor”, Adv. Mater, 22, 3568-3572, 2010.

    [7] Jin Wook Jeong, “The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors”, Sensors and Actuators B, 146, 40-45, 2010.

    [8] Mark E. Roberts, “Influence of Molecular Structure and Film Properties on the Water-Stability and Sensor Characteristics of Organic Transistors”, Chemistry of Materials., 20, 7332–7338, 2008.

    [9] Mark E. Roberts, “Water-stable organic transistors and their application in chemical and biological sensors”, PNAS, 105, 12134–12139, 2008.

    [10] Luisa Torsi, “Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors”, Sensors and Actuators B, 98, 204–207, 2004.

    [11] H. Jiang, “High-performance organic single-crystal field-effect transistor of indolo[3,2-b]carbazole and their potential applications in gas controlled organic memory device”, Adv. Mater, 23, 5075-5080, 2011.

    [12] Matthew J. Panzer, “Polymer Electrolyte-Gated Organic Field-Effect Transistors:  Low-Voltage, High-Current Switches for Organic Electronics and Testbeds for Probing Electrical Transport at High Charge Carrier Density”, J. Am. Chem. Soc., 129, 6599-6607, 2007.

    [13] R. M. Glaeser, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models”, J. Chem. Phys., 44, 3797, 1966.

    [14] A. Miller, “Impurity conduction at low concentrations”, Phys. Rev., 120, 745-755, 1956.

    [15] D. A. Neamen, “Semiconductor physics and devices basic principles 3rd edition”, 2003.

    [16] Amanda R. Murphy, “Organic Semiconducting Oligomers for Use in Thin Film Transistors”, Chem. Rev., 107, 1066–1096, 2007.

    [17] T. A. Chen, “Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by rieke zinc: their characterization and solid-state properties”, J. Am. Chem. Soc., 117, 233, 1995.

    [18] H. Tada, “Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures”, Journal of Applied Physics, 87, 4189-4193, 2000.

    [19] Martin Brinkmann, “Structure and morphology control in thin films of regioregular poly(3-hexylthiophene)”, Journal of Polymer Science Part B: Polymer Physics, 49, 1218-1233, 2011.

    [20] R. Joseph Kline, “Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight”, Macromolecules, 38, 3312-3319, 2005.

    [21] Dean M. DeLongchamp, “Variations in Semiconducting Polymer Microstructure and Hole Mobility with Spin-Coating Speed”, Chem. Mater, 17, 5610, 2005.

    [22] H. Sirringhaus, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, 401, 685-688, 1999.

    [23] Yan Guo, “Interfacial Interactions between Poly(3-hexylthiophene) and Substrates”, Macromolecules, 46, 2733–2739, 2013.

    [24] Brendan O'Connor, “Anisotropic Structure and Charge Transport in Highly Strain-Aligned Regioregular Poly(3-hexylthiophene)”, Advanced Functional Materials, 21, 3697–3705, 2011.

    [25] R.J. Kline, “Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight”, Adv. Mater, 15, 1519–1522, 2003.

    [26] Jui-Fen Chang, “Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents”, Chem. Mater., 16, 4772–4776, 2004.

    [27] Kunjithapatham Sethuraman, “Performance of poly(3-hexylthiophene) organic field-effect transistors on cross-linked poly(4-vinyl phenol) dielectric layer and solvent effects”, Appl. Phys. Lett., 92, 183302, 2008.

    [28] Yanmin Sun, “Polythiophene-based field-effect transistors with enhanced air stability”, Organic Electronics, 11, 351–355, 2008.

    [29] D. V. Lang, “Bias-dependent generation and quenching of defects in pentacene”, Phys Rev Lett., 93, 076601, 2004.

    [30] M. J. Chow, “Effects of mechanical strain on amorphous silicon thin-film transistor electrical stability”, Appl. Phys. Lett, 102, 233509, 2013.

    [31] S. G. J. Mathijssen, “Scanning Kelvin probe microscopy on organic field-effect transistors during gate bias stress”, Appl. Phys. Lett, 90, 192104, 2007.

    [32] Zongpeng Zhu, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications”, Physica E, 59, 83–87, 2014.

    [33] B. Crone, “Electronic sensing of vapors with organic transistors”, Appl. Phys. Lett. , 78, 2229, 2001.

    [34] Jia Huang, “Hydroxy-Terminated Organic Semiconductor-Based Field-Effect Transistors for Phosphonate Vapor Detection”, J. Am. Chem. Soc., 129, 9366–9376, 2007.

    [35] Hsiao-Wen Zan, “Porous Organic TFTs for the Applications on Real-Time and Sensitive Gas Sensors”, Electron Device Letters, IEEE, 32, 1143-1145, 2011.

    [36] Dai MZ, “Highly sensitive ammonia sensor with organic vertical nanojunctions for noninvasive detection of hepatic injury”, Anal Chem., 85, 3110-3117, 2013.

    [37] H. Yang, “Pentacene Nanostructures on Surface Hydrophobicity Controlled Polymer/SiO2 Bilayer Gate-Dielectrics”, Adv. Mater, 19, 2868–2872, 2007.

    [38] Kobayashi S, “Control of carrier density by self-assembled monolayers in organic field-effect transistors”, Nat Mater, 3, 317-322, 2004.

    [39] S. J. Zilker, “Bias stress in organic thin-film transistors and logic gates”, Appl. Phys. Lett., 79, 1124, 2001.

    [40] Chengang Feng, “Influence of trapping states at the dielectric–dielectric interface on the stability of organic field-effect transistors with bilayer gate dielectric”, Organic Electronics, 12, 1304–1313, 2011.

    [41] I. H. Campbell, “Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers”, Phys. Rev. B, 54, 20, 1996.

    [42] G. Louarn, “Raman spectroscopic studies of regioregular poly(3-alkylthiophenes)”, J. Phys. Chem, 100, 12532, 1996.

    [43] S. Lefrant, “Structural properties of some conducting polymers and carbon nanotubes investigated by SERS spectroscopy”, Synth. Met, 100, 13, 1999.

    [44] M. Baibarac, “SERS spectra of poly(3-alkylthiophenes) in oxidized and unoxidized states”, J. Raman Spectrosc, 29, 825, 1998.

    [45] G.Zerbi, “Thermochromism in polyalkylthiophenes: molecular aspects from vibrational spectroscopy”, J. Chem. Phys., 97, 4646, 1991.

    無法下載圖示 校內:2019-08-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE