簡易檢索 / 詳目顯示

研究生: 林蘇緯
Lin, Sue-wei
論文名稱: 以電鑄法製備鎳金屬模具及其壓印行為分析
Electroforming of nickel mold and its imprinting behavior
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 86
中文關鍵詞: 鎳模具壓印電鑄
外文關鍵詞: nickel mold, imprinting, electroforming
相關次數: 點閱:55下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微奈米壓印製程中,傳統的矽模具由於易脆性,已漸漸被淘汰,因此本研究嘗試以鎳金屬取代矽作為壓印模具以解決矽模具易脆裂而使用壽命不長的方法。本研究主要分為兩個部份,首先為以電鑄方式製備具高強度、高使用壽命之鎳/不鏽鋼複合式金屬模具。其次利用鎳金屬模具的表面改質,以提昇模具表面抗沾粘之能力。
    本研究首先以具微結構之環氧樹脂(epoxy)為電鑄母模,於商用無電鍍鎳鍍液中反應鍍析15分鐘,可在環氧樹脂基板上製備厚度約950nm之無針孔無裂痕之電鑄晶種層。而此一電鑄晶種層經成份與結構分析後為含磷量10at%之微晶與非晶質共存(amorphous-like structure)之鎳磷合金,其後以電鑄法將鎳金屬模具結合在不鏽鋼板上,製備一高穩定性的鎳/不鏽鋼金屬模具。傳統的電鑄方式以直流電源進行電鑄,常會產生氫氣析出在電鑄基板表面,導致鎳模具無法與不鏽鋼板接合,本實驗中利用週期反向電流(periodic reverse current)進行電鑄,可有效消除氫氣造成的表面極化現象。實驗結果顯示,具不鏽鋼背板穩定後之鎳金屬模具進行壓印測試,大面積圖形轉印效果較諸薄片狀鎳金屬模具有顯著提昇,顯示塊材狀複合式金屬模具具有高平整性於熱壓印製程具有應力分佈平均等特點。
    在金屬模具的表面改質上,利用溼式氧化處理於鎳金屬模具表面生成氧化層,並利用氧化物表面所帶之氫氧基,與有機分子螯合劑進行自身組裝反應,實驗中選擇的的螯合劑為十八烷基三氯矽烷。經氧化處理完之鎳金屬模具表面經X光光電子能譜儀表面鍵結分析(XPS),發現模具表面產生氧1s軌域之鍵結,而經自身組裝後,表面具有碳1s軌域之鍵結。而與水接觸角由50o提昇至100o上下,由此疏水表面反應出表面抗沾黏性質明顯上昇。在本研究中,以電鑄法製備最小線寬200nm的鎳金屬模式,以壓克力型(PMMA)阻劑進行熱壓印試驗,成功轉印出具200nm奈米線寬的奈米光柵與光子晶體結構圖型。經三十次重覆壓印後,表面與水接觸角並無明顯下降。說明了結合電鑄法及適當表面改質,製備奈米線寬鎳模具,具有實際應用潛力。

    For imprinting lithography in the past, the commonly used silicon mold has caused major concern due to its fragility. A metallic mold may replace the Si mold to solve the problem of being too brittle to endure the cyclic imprinting process. Thus, the two objectives of this work are (1) to fabricate a nickel mold for imprinting processes using electroforming technique (2) to improve anti-adhesive property of Ni-mold surface using wet-chemical process.
    The electroless plating was adopted for the preparation of seed layer of electroformed Ni on the patterned epoxy template. The electroless plated seed layer was found to be Ni-P alloy containing 10at% P. In the subsequent electroforming process, the formation of hydrogen bubbles was observed when the constant current was applied. However, the formation of hydrogen bubbles may be suppressed when the current was applied in a square wave function. Using a perforated stainless steel board (~1mm thick) as a support, electroformed Ni mold was well bonded to the stainless steel. The nano patterns with feature size around 200nm was also successfully duplicated using an electroformed Ni mold.
    In order to improve anti-adhesive nature of Ni mold, oxidation of Ni-mold surface was carefully controlled. The result shows that the oxidation of Ni-P seed layer gives a uniform and continuous oxide film. Such an oxide film provides hydroxyl to form chemical bonding with Octadecyltrichlorosilane for mold releasing. Consequently, the contact angle of oxidized and treated electroformed Ni mold increased from 50o to 100o. After 30 repeated imprinting tests, no significant change in contact angle was observed. The feasibility of using electroformed Ni mold for imprinting application was successfully demonstrated.

    總目錄 中文摘要.................................................Ⅰ 英文摘要.................................................Ⅲ 致謝.....................................................Ⅴ 總目錄.................................................. Ⅵ 表目錄...................................................Ⅹ 圖目錄..................................................ⅩΙ 第一章 緒論..............................................1 1-1 前言.................................................1 1-2 研究動機及目的.......................................4 第二章 理論基礎及文獻回顧................................7 2-1 以無電鍍鎳方式製備導電晶種層.........................7 2-1-1 無電鍍鎳製程簡介.................................7 2-1-2 無電鍍鎳原理.....................................7 2-1-3 無電鍍鎳結構....................................10 2-1-4 無電鍍鎳鍍液組成及特性..........................12 2-1-5 影響無電鍍鎳析鍍速率之因素......................13 2-1-6 基材表面之前處理................................16 2-2 電鑄技術的理論......................................17 2-2-1 電鑄槽內電鑄金屬電荷轉移的情形...................17 2-2-2 過電壓理論( overpotential )........................19 2-2-3 沉積速率理論.......................................21 2-2-4 電鑄鎳金屬.........................................22 2-3 表面抗沾粘處理......................................25 2-3-1 溼式氧化處理....................................25 2-3-2 氧化物表面結構..................................25 2-3-3 自身組裝高分子脫模層............................26 2-4 熱隆起壓印技術(Hot Embossing).......................28 第三章 實驗方法與步驟...................................29 3-1 實驗流程............................................29 3-2 電鑄前基板處理......................................29 3-2-1 試片前處理......................................29 3-2-2 敏化及活化......................................30 3-2-3 以無電鍍鎳披覆導電晶種層........................31 3-3 電鑄鎳金屬模具......................................33 3-3-1 電鑄試片之前處理.................................33 3-3-2 於無電鍍鎳晶種層表面進行電鑄.....................33 3-4 電鑄複合式 鎳/不鏽鋼 鎳金屬模具.....................34 3-4-1 不鏽鋼背板前處理................................35 3-4-2 不鏽鋼背板流道設計..............................36 3-4-3 直流電源設計....................................36 3-5 鎳金屬模具表面處理..................................37 3-5-1 模具表面之氧化處理..............................38 3-5-2 自身組裝有機分子抗沾粘層........................38 3-6 高溫壓印製程........................................38 第四章 結果與討論.......................................40 4-1 以無電鍍鎳方式在具微結構基板表面製備導電晶種層......40 4-1-1 無電鍍晶種層表面型態觀察與成份分析..............40 4-1-2 無電鍍晶種層之XRD結構分析.......................45 4-2 利用無電鍍鎳鍍析晶種層進行電化學鑄造................48 4-2-1 電化學沉積效率..................................48 4-2-2 以電鑄法製備鎳/不鏽鋼複合模具.....................49 4-2-3 鎳金屬模具表面型態SEM觀察.......................55 4-2-4 複合結構截面型態SEM觀察.........................57 4-3 鎳金屬模具表面抗沾黏處理及其性質分析................57 4-3-1 純鎳金屬與鎳-磷合金經氧化處理後之SEM觀察........58 4-3-2 電鑄鎳模具經氧化處理後XRD分析...................64 4-3-3 不同氧化時間與熱處理對鎳金屬模具表面結構XRD分析.65 4-3-4 不同氧化時間對表面硬度分析......................67 4-3-5 經自身組裝有機分子層後之成份分析................70 4-4 熱壓印行為分析......................................72 4-4-1 薄片鎳金屬模具之壓印結構觀察....................72 4-4-2 以複合式鎳/不鏽鋼模具之壓印結構觀察.............75 4-4-3 經表面改質後之鎳金屬模具進行壓印行為SEM分析.......76 結論.....................................................81 參考文獻.................................................82

    參考文獻
    1. ITRS, International Technology Roadmap for semiconductors Conference. (2003).

    2. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. 67, 3114(1995).

    3. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution”, Science, 272, 85(1996).

    4. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprinting lithography” ,J. Vac. Sci. Technol. B 14, 4129(1996).

    5. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications”, J. Vac. Sci. Technol. B 15, 2897(1997).

    6. K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuthera, J. Seekampb, S. Zankovych, C. M. Sotomayor Torres, I.Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H. -C. Scheer, F. Steingrueber, “Polymer stamps for nanoimprinting”, Microelectronic Engineering, 61–62, 393(2002).

    7. M. Colburn, et al., “Step and flash imprint lithography: A new approach to high resolution patterning”, Proc. SPIE:Emerging Lithographic Technologies Ⅲ, 3676(Ⅰ), 379(1999).

    8. Y. Xia, GM Whitesides, Angew. “Soft Lithography”, Angewandte Chemie International Edition. 37, 550(1998).

    9. M. Madou, “ Fundamentals of Microfabrication,” 高立圖書公司, 1997.

    10. M. Keil, M. Beck, and G. Frennesson “Process development and characterization of antisticking layers on nickel-based stamps designed for nanoimprint lithography” J. Vac. Sci. Technol. B 22(6), Nov/Dec 2004

    11. S. Park, H. Schift, C. Padeste , B. Schnyder, R. Kotz, J. Gobrecht. “Anti-adhesive layers on nickel stamps for nanoimprint lithography” Microelectronic Engineering 73–74 (2004) 196–201

    12. M. Schlesinger, M. Paunovic “Modern Electroplating 4th”, John Wiley & Sons, New York, 667(2000).

    13. G. O. Mallory and J. B. Hajdu, “Electroless plating: fundamentals and applications”, AESF, Orlando, Florida, Chapter 1, (1990).

    14. G. Salvago and P. L. Cavallotti, "Characteristics of the Chemical Reduction of Nickel Alloys with Hypophosphite," Plating, 59 (7), 665(1972).

    15. J. E. A. M. Van Den Meerakker, "On the Mechanism of Electroless plating II. One Mechanism for Different Reductants," J. Appl. Electrochem., 11 (3), 365(1891).

    16. H. G. Schenzel and H. Kreye, “Improved corrosion resistance of electroless nickelphosphorus coating”, Plat. Surf. Finish., 77 (10), 50(1990).

    17. K. Parker, “Electroless nickel: state of the art”, Plat. Surf. Finish., 79 (3) 29(1992).

    18. R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect of coating properties”, Plat. Surf. Finish., 83 (11), 65(1996).

    19. 黃飛雄, "無電鍍鎳特性與應用," 工業技術85 期, 24(1981)

    20. K-P. Han and Y. Wu, "A Super High Speed Electroless Nickel plating Process," Trans. Institute Metal Finishing, 74 (3), 91(1996)

    21. J-L. Fang, Y. Wu, and K-P. Han, "Acceleration Mechanism of Thioglycolic Acid for Electroless Nickel Deposition," Plating and Surface Finishing, 84, 91(1997)

    22. 楊聰仁, 無電鍍鎳及其應用,國彰出版社, 台中市, 民國 76 年, 第一章、第二章.

    23. X. Chen, J. Yi. , G. Qi, and F. Liu, "Electroless Nickel Bath for Wafer Bumping: Influence of Additives," International Symposium on Electronic Materials and Packaging, 12(2000)

    24. R. L. Cohen, J. F. D'Amico, and K. W. West, “Mössbauer Study of Tin(II) Sensitizer Deposits on Kapton”, J. Electrochem. Soc. 118, 2042(1971).

    25. C. H. de Minjer and P. F. J. v. d. Boom, “The Nucleation with SnCl2-PdCl2 Solutions of Glass Before Electroless Plating”, J. Electrochem. Soc. 120, 1644(1973).

    26. R. L. Meek, “A Rutherford Scattering Study of Catalyst Systems for Electroless Cu Plating”, J. Electrochem. Soc. 122, 1478(1975).

    27. J. F. D'Amico, M. A. De Angelo, J. F. Henrickson, J. T. Kenney, and D. J. Sharp, “Selective Electroless Metal Deposition Using Patterned Photo-Oxidation of Sn(II) Sensitized Substrates”, J. Electrochem. Soc. 118, 1695(1971).

    28. N. Feldstein, and J. A. Weiner, “Surface Characterization of Sensitized and Activated Teflon”, J. Electrochem. Soc. 120, 475(1973).

    29. 楊啟榮,「微系統LIGA 製程之精密電鑄技術」,科儀新知,第21卷,第6期 (2000)

    30. K.P. Wong, K.C. Chan, T.M. Yue, ”A study of surface finishing in pulse currentelectroforming of nickel by utilizing different shaped waveforms”, Surface andCoating Technology 115, (1999) 132-139.

    31. K.P. Wong, K.C. Chan, T.M. Yue, ”Modelling the effect of complex waveform onsurface finishing in pulse current electroforming of nickel”,Surface and Coating Technology 135,(2000)91-97.

    32. H. Yang, S.-W. Kang, “Improvement of thickness uniformity in nickelelectroforming for the LIGA process”, international Journal of Machine Tools and Manufacture 40,(2000) 1065-1072.

    33. J. A. McGeough, M. C. Leu, K. P. Rajurkar, A. K. M De Silva, Q. Liu, “Electroforming Process and Application to Micro/Macro Manufacturing”, Annals of the CIRP, 50(2), 499(2001).

    34. Charles Kittel, “固態物理學導論”, 高立圖書有限公司, 第七板.

    35. R. Maoz, S. R. Cohen, and J. Sagiv, “Nanoelectrochemical Patterning of Monolayer Surfaces: Toward Spatially Defined Self-Assembly of Nanostructures” Adv. Mater. 1999, 11, No. 1.

    36. A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chem. Rev. 1996, 96, 1533-1554.

    37. N. Tillman, A. Ulman, and T. L. Penner “Formation of Multilayers by Self-Assembly”, Langmuir 1989, 5, 101-111.

    38. 呂春福、葉信宏、王紀雯、周敏傑,「低應力高硬度精密鎳基合金模具之電鑄技術」,模具技術成果暨論文集 (1999)

    39. S. Fatikow, U. Rembold, “Microsystem Technology and Microrobotics, ” , 高立圖書公司, 2000

    40. R. L. Zeller III and L. Salvati Jr, “Effects of Phosphorus on Corrosion Resistance of Electroless Nickel in 50% Sodium Hydroxide” CORROSION–Vol. 50, No. 6

    41. H. A. Sorkhabi, S. H. Rafizadeh, “Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni–P alloy deposits” Surface and Coatings Technology 176 (2004) 318–326

    下載圖示 校內:2019-08-19公開
    校外:2019-08-19公開
    QR CODE