簡易檢索 / 詳目顯示

研究生: 陳麒
Chen, Chi
論文名稱: 簡單正弦位移追蹤練習對複合正弦位移追蹤活動之學習轉移效應
The Effect of Learning Transfer on Compound Sinusoidal Tracking Consequent to Repetitive Practice of Simple Sinusoidal Tracking
指導教授: 黃英修
Hwang, Ing-Shiou
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 56
中文關鍵詞: 動作速度追蹤測驗視覺迴授學習轉移動作震顫
外文關鍵詞: visual feedback, position tracking, movement velocity, kinetic tremor, learning transfer
相關次數: 點閱:87下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究目的:動作學習是反覆練習造成動作表現的進步,有學者認為學習新動作會產生新的內部模型,當不同動作的內部模型間有較多交集,可產生更明顯的學習轉移;過去學者多觀察相似動作或是兩側肢體的學習轉移,較少針對簡單動作到複雜動作的學習轉移與學習轉移對視覺迴授的依賴進行探討;本實驗使用動作表現及伴隨動作震顫來觀察:學習簡單位移追蹤練習後,在複合位移追蹤動作的學習轉移效應,並探討視覺迴授在學習轉移過程中,對內部動作模型概化之影響。
    研究方法:徵召十六位健康受試者,要求受試者的食指跟隨螢幕出現的正弦波形做交替內收及外展的動作,在提供視覺迴授的情形下,學習0.25Hz、0.75Hz兩種簡單正弦波位移追蹤動作,每次練習時間為40秒,中間間隔40秒作休息,每個項目練習8次,共16次,以雷射位移記錄系統,記錄學習前後0.25Hz、0.75Hz簡單正弦波位移追蹤動作、與有無視覺迴授下複合波追蹤動作等四種追蹤動作情況下,食指表現曲線與動作震顫資料,為防止疲勞影響數據,在學習後測驗結束15分鐘再施予相同的測驗。由學習前後的食指表現曲線與目標曲線,分析振幅耦合程度與表現總誤差值,並計算表現與相對進步量;動作震顫部份以均方根值代表振幅大小,進行功率頻譜密度分析去探討高峰頻率於學習後之變化。
    研究結果:學習簡單位移追蹤動作後,複合正弦波追蹤動作表現曲線與目標曲線之耦合度顯著增加,且表現總誤差顯著減少,特別是有視覺迴授的複合正弦波其振幅耦合的相對進步量遠大於其他三項測驗;然而,複合正弦波表現總誤差值的進步量在有無視覺迴授下並沒有顯著不同;震顫分析部分的結果顯示:在頻率較高的0.75Hz與複合波追蹤測驗中,震顫振幅在學習後皆有顯著的變小,而0.75Hz及有視覺迴授複合波追蹤測驗震顫振幅相對改變量雖多於0.25Hz追蹤測驗,但統計上無顯著差異;動作學習後,四種追蹤測驗1-4Hz高峰頻率皆會有顯著的下降,但四種測驗間在相對進步量方面並沒有顯著差異;在6-12Hz高峰頻率,僅在0.75Hz追蹤測驗有顯著下降的趨勢。
    結論:學習簡單正弦位移追蹤動作之後,學習成果將有效轉移至複合正弦位移追蹤動作,尤其在提供視覺迴授下,波形的學習與轉移有明顯的加成效果;動作震顫的結構因動作學習而改變,1-4 Hz低頻震顫減少與手眼協調成熟有關;而6-12Hz動作震顫振幅僅在較高頻0.75Hz正弦位移追蹤出現學習後減少的情形,推論中央震顫迴路與反應時間短、傾向開放徑路的學習有關。

    Objective: Motor learning is the process of acquisition of movement skill due to repetitive practicing. In general, learning a new motor skill associated with development of a new internal model; Provided that different motor skills share some inherent components of internal models, the effect of learning transfer would be evident. Several previous studies have investigated the motor transferring across limbs, however little attention was paid to the extent to which a complex movement can be benefited from practicing a simple act beforehand, as well as the dependence on visual feedback after learning transfer. In this study, we used the laser system to detect performance of the tracking tasks and associated kinetic tremor to observe the effects of learning transfer on compound sinusoidal tracking consequent to simple sinusoidal tracking with visual feedback. Next, the present study also investigated the significance of visual feedback for tracking task in relation to generalization of internal models.

    Methods: Sixteen healthy subjects practiced alternate abduction and adduction with the dominant index finger to couple the position trace with the sinusoidal waves at 0.25Hz and 0.75Hz. Each practice trial consisted of eight 40-second trials which were interlaced with a 40 second resting interval. Pre-test and post-test contained four different position tracking tests: 0.25Hz/0.75Hz sinusoidal tracking, and compound wave (0.25Hz +0.75Hz) with and without visual feedback. Re-test was performed fifteen minutes later after post-test to minimize fatigue effect. Position trace and kinetic tremor were recorded with the laser system. Cross correlation and root mean square (RMS) of position trace and target curves were determined to characterize waveform congruency and performance errors. RMS and tremor peaks in the 1-4 Hz and 6-12 Hz of kinetic tremor were calculated. The amounts of relative changes in all features of kinetic tremor were contrasted among all tracking tests after learning the simple sinusoidal tracking.

    Results: After practicing simple sinusoidal tracking, the waveform congruency improved and the total errors decreased in the compound tracking tasks. In reference to simple tracking task, the waveform congruency of compound tracking task with visual feedback was much improved, though reduction in performance errors was not completely dependent on provision of visual feedback. Quantitative tremor analysis showed that practicing resulted in a greater decrement in tremor amplitude in the tests of the 0.75Hz sinusoidal tracking and compound sinusoidal tracking. Specifically, 1-4 Hz tremor peak reduced for all tracking tests, though the amount of relative decrement in 1-4 Hz tremor peak did not differ among various tracking tests. Noticeably, the 6-12 Hz tremor peak decreased merely in the 0.75Hz tracking task after learning the simple sinusoidal tracking task.

    Conclusion: After simple sinusoidal tracking, motor learning was evident which could be transferred efficiently to compound position tracking, in support of enhancement of waveform congruency and decrease in mismatch errors. Particularly, visual feedback added to waveform congruency in the compound tracking task. Learning from simple tracking appeared to decrease 1-4 Hz tremor peak during compound position tracking without visual feedback condition, although it was not different among different tracking tests; thus it suggested that low frequency tremor was related to eye-hand coordination. Moreover, modulation of central rhythm related functionally to successful learning in sinusoidal tracking at a higher rate, which is premeditated by open-loop control.

    目錄 中文摘要...............................................I 英文摘要.............................................III 誌謝..................................................VI 目錄.................................................VII 表目錄................................................IX 圖目錄.................................................X 第一章 前言 1 第一節 研究背景與文獻回顧.............................1 第二節 研究目的.......................................8 第三節 研究問題與假說.................................9 第四節 研究問題的重要性..............................10 第二章 研究方法 11 第一節 受試者........................................11 第二節 實驗步驟與流程................................12 第三節 實驗儀器與設置................................17 第四節 資料收集......................................18 第五節 訊號處理......................................19 第六節 統計分析......................................21 第三章 研究結果 22 第一節 位移追蹤學習之功能表現........................24 一、 表現曲線交互相關值與其相對進步量..............24 二、 表現曲線與目標曲線之總誤差與其相對進步量......27 第二節 位移追蹤學習之動作震顫表現....................30 一、 動作震顫的振幅改變與其相對進步量..............31 二、 動作震顫之低頻高峰值與其相對進步量............33 三、 動作震顫之高頻高峰值與其相對進步量............35 第四章 討論 38 第一節 表現曲線主動控制部份在學習後的改變............39 一、 簡單正弦波追蹤學習後轉移效應..................39 二、 視覺迴授加強效應..............................41 第二節 震顫表現在學習後的改變........................42 一、 6-12Hz動作震顫變化反應快動作的學習與轉移......42 二、 1-4Hz低頻動作震顫與手眼協調的關係.............44 第五章 結論 46 第一節 總結..........................................46 第二節 實驗限制......................................47 第三節 臨床應用與未來發展............................48 參考文獻..............................................49 自述..................................................56

    1. Adams JA, Bray NW. A closed-loop theory of paired-associative verbal learning. Psychological Review 1970;77:385-405.
    2. Arihara M, Sakamoto K. Contribution of motor unit activity enhanced by acute fatigue to physiological tremor of finger. Electromyography & Clinical Neurophysiology 1999;39:235-247.
    3. Buchanan JJ, Zihlman K, Ryu YU. Learning and transfer of a relative phase pattern and a joint amplitude ratio in a rhythmic multijoint arm movement. Journal of Motor Behavior 2007;39:49-67.
    4. Bursztyn L, Ganesh G, Imamizu H, Kawato M, Flanagan JR. Neural correlates of internal-model loading. Current Biology 2006;16:2440-2445.
    5. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 2002;125:773-788.
    6. Casile A, Giese MA. Nonvisual motor training influences biological motion perception. Current Biology 2006;16:69-74.
    7. Celnik P, Stefan K, Hummel F, Duque J, Classen J, Cohen LG. Encoding a motor memory in the older adult by action observation. NeuroImage 2006;29:677-684.
    8. Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R. Learned dynamics of reaching movements generalize from dominant to nondominant arm. Journal of Neurophysiology 2003;89:168-176.
    9. Donchin O, Sawaki L, Madupu G, Cohen LG, Shadmehr R. Mechanisms influencing acquisition and recall of motor memories. Journal of Neurophysiology 2002;88:2114-2123.
    10. Gribble PL, Mullin LI, Cothros N, Matter A. Role of cocontraction in arm movement accuracy. Journal of Neurophysiology 2003;89:2396-2405.
    11. Hadj-Bouziane F, Frankowska H, Meunier M, Coquelin P-A, Boussaoud D. Conditional visuo-motor learning and dimension reduction. Cognitive Process 2006;7:95-104.
    12. Hallett M. Overview of human tremor physiology. Movement Disorder 1998;13:43-48.
    13. Halliday DM, Conway BA, Farmer SF, Rosenberg JR. Load-Independent Contributions From Motor-Unit Synchronization to Human Physiological Tremor. Journal of Neurophysiology 1999;82:664-675.
    14. Halliday DM, Conway BA, Farmer SF, Shahani U, Russell AJ, Rosenberg JR. Coherence between low-frequency activation of the motor cortex and tremor in patients with essential tremor. Lancet 2000;355:1149-1153.
    15. Halsband U, Lange RK. Motor learning in man: A review of functional and clinical studies. Journal of Physiology-Paris 2006;99:414-424.
    16. Harris JA, Diamond ME. Ipsilateral and contralateral transfer of tactile learning. Neuroreport 1999;11:263-266.
    17. Harris JA, Harris IM, Diamond ME. The topography of tactile learning in humans. The Journal of Neuroscience 2001;21:1056-1061.
    18. Huang CT, Hwang IS, Huang CC, Young MS. Exertion dependent alternations in force fluctuation and limb acceleration during sustained fatiguing contraction. European Journal of Applied Phisiology 2006;97:362-371.
    19. Hurley SR, Lee TD. The influence of augmented feedback and prior learning on the acquisition of a new bimanual coordination pattern. Human Movement Science 2006;25:339-348.
    20. Hwang IS, Huang CT, Cherng RJ, Huang CC. Postural fluctuations during pointing from a unilateral or bilateral stance. Human Movement Science 2006;25:275-291.
    21. Hwang IS, Wu PS. The reorganization of tremulous movements in the upper limb due to finger tracking maneuvers. European Journal of Applied Phisiology 2006;98:191-201.
    22. Imamizu H, Sugimoto N, Osu R, Tsutsui K, Sugiyama K, Wada Y, Kawato M. Explicit contextual information selectively contributes to predictive switching of internal models. Experimental Brain Research 2007.
    23. Ioffe ME, Chernikova LA, Ustinova KI. Role of cerebellum in learning postural tasks. The Cerebellum 2007;6:87-94.
    24. Ito M. Internal model visualized. Nature 2000;403:153-154.
    25. Jensen JL, C.D.Marstrand P, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. Journal of Applied Physiology 2005;99:1558-1568.
    26. Krigolson O, Gyn GV, Tremblay L, Heath M. Is there "feedback" during visual imagery? Evidence from a specificity of practice paradigm. Canadian Journal of Experomental Psychology 2006;60:24-32.
    27. Lam T, Dietz V. Transfer of motor performance in an obstacle avoidance task to different walking conditions. Journal of Neurophysiology 2004;92:2010-2016.
    28. Liu X, Tubbesing SA, Aziz TZ, Miall RC, Stein JF. Effects of visual feedback on manual tracking and action tremor in Parkinson's disease. Experimental Brain Research 1999;129:477-481.
    29. Lungu OV, Wachter T, Liu T, Willingham DT, Ashe J. Probability detection mechanisms and motor learning. Experimental Brain Research 2004;159:135-150.
    30. McAuley JH, Rothwell JC, Marsden CD. Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing Experimental Brain Research 1997;114:525-541.
    31. McAuley JH, Farmer SF, Rothwell JC. Common 3 and 10 Hz osillations modulate human eye and finger movements while they simultaneously track a visual target. Journal of Physiology 1999;515:905-917.
    32. McAuley JH, Marsden CD. Physiological and pathological tremors and rhythmic central motor control. Brain 2000;123:1545-1567.
    33. Miall RC, Reckess GZ, Imamizu H. The cerebellum coordinates eye and hand tracking movements. Nature Neuroscience 2001;4:638-644.
    34. Miall RC, Jenkinson EW. Functional imaging of changes in cerebellar activity related to learning during a novel eye-ahnd tracking task. Experimental Brain Research 2005;166:170-183.
    35. Milner TE, Franklin DW. Impedance control and internal model use during the initial stage of adaptation to novel dynamics in humans. Journal of Physiology 2005;567:651-664.
    36. Mulder T, Hulstyn W. Sensory feedback theory and theoretical knowledge of motor control and learning. American Journal of Physical Medicine 1984;63:226-244.
    37. Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M. Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. Journal of Neurophysiology 2002;88:991-1004.
    38. Panzer S, Wilde H, Shea CH. Learning of similar complex movement sequences: Proactive and retroactive effects on learning. Journal of Motor Behavior 2006;38:60-70.
    39. Schmidt RA, Lee TD. Motor control and learning. Champaign, IL: Human Kinetics; 2005.
    40. Seitz AR, Kim R, Shams L. Sound facilitates visual learning. Current Biology 2006;16:1422-1427.
    41. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience 1994;14:3208-3224.
    42. Shadmehr R, Holcomb HH. Neural correlates of motor memory consolidation. Science 1997;277:821-825.
    43. Shea CH, Wulf G. Schema theory: A critical appraisal and reevaluation. Journal of Motor Behavior 2005;37:85-101.
    44. Smith MA, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington's disease but not cerebellar degeneration. Journal of Neurophysiology 2005;93:2809-2821.
    45. Thoroughman KA, Shadmehr R. Electromyographic correlates of learning an internal model of reaching movements. the Journal of Neuroscience 1999;19:8573-8588.
    46. Tong C, Flanagan JR. Task-specific internal models for kinematic transformations. Journal of Neurophysiology 2003;90:578-585.
    47. Vallbo AB, Wessberg J. Organization of motor output in slow finger movements in man. Journal of Physiology 1993;469:673-691.
    48. Walsh EG, Wright GW. Inertia, resonant frequency, stiffness and kinetic energy of the human forearm. Quarterly Journal of Experimental Physiology 1987;72:161-170.
    49. Witney AG. Internal models for bi-manual tasks. Human Movement Science 2004;23:747-770.
    50. 董奇, 陶沙. 動作與心理發展. 2nd ed. 北京: 五南出版社; 2004. p 121-156.

    下載圖示 校內:立即公開
    校外:2007-08-08公開
    QR CODE