| 研究生: |
張家維 Chang, Chia-Wei |
|---|---|
| 論文名稱: |
具有隔板之空腔內垂直鰭片的自然對流熱傳研究 Study on Natural Convective Heat Transfer of Vertical Fins in a Cavity with Clapboard |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 逆算法 、封閉空腔 、自然對流 、垂直鰭片 、CFD模擬 |
| 外文關鍵詞: | Inverse scheme, vertical fins in a cavity, clapboards, heat transfer coefficient, natural convection |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以逆向方法及實驗特定溫度點的量測搭配ANSYS ICEPAK 15中各種流動模式的比較,確立合適於散熱水平鰭片置於封閉空腔內的熱壁中之系統的流動模式,再經由合適的流動模式預測水平鰭片之熱傳導係數及觀測鰭片對於封閉空腔內的流場產生之影響。實驗方面以不同高度鰭片隨鰭片位置、鰭片間距及鰭片數量等測試對鰭片表面的熱傳導係數及鰭片本身周圍的流場產生之影響。並利用ANSYS ICEPAK 15進行網格測試,研究網格劃分對於系統求解的影響。結果顯示上下鰭片在熱傳導係數的表現上複雜許多,鰭片間邊界層的互相影響或鰭片與空腔左邊界的互相影響,使得鰭片之熱傳係數不再只是隨著鰭片高度及間距增加而上升,透過以實驗數據搭配數值結果的溫度分布圖及速度流線圖去分析實驗的實驗數據的種種現象,另外嘗試以無因次參數進行流場行為之說明,並和研究結果進行互相驗證,最後為了驗證結果之可靠性及可用性,將所求結果與相關參考文獻之現象比較,得到上下兩鰭片間距越大的確有利於系統對流,流場之流速提升,鰭片本身的熱傳導係數也有所提升。
In this study, inversion methods, computational fluid dynamics (CFD) software and experimental methods are used to predict the heat transfer and fluid characteristics of the vertical fins in the cavity. The influence of certain physical parameters (such as fin length, clapboard length and distance between fin and clapboard) was checked. The inverse method combines the least squares scheme and the experimental data to apply the finite difference method to estimate the heat transfer coefficient on the heat sink. The Rayleigh number method and temperature reference method are used, and the experimental results and numerical results are compared to obtain a suitable flow model. Through the temperature profile, velocity field and heat transfer characteristics, the influence of the clapboard on the heat sink in the cavity around the heat sink is studied. The clapboard will destroy the internal flow field and reduce the heat dissipation effect of the vertical fins. At the same time, the longer vertical fins will reduce the heat convection effect in the cavity, and the heat dissipation effect of the vertical fins is poor. When the clapboard is close to the vertical fins, the area between the two objects is prone to heat accumulation, which reduces the heat transfer effect. In this experiment, the temperature distribution on fins of various sizes has little difference. It can be seen that the thermal convection in the cavity in this experiment is the main reason that mainly affects the heat dissipation of the vertical fins.
[1] A.D. Kraus, A. Aziz, J. Welty, ՙՙExtended surface heat transfer,ˮ John Wiley and Sons,Inc.,2001.
[2] T. E.Schmidt, Heat transfer calculations for extended surfaces, Refri. Eng., pp. 351-357, 1949.
[3] W. Elenbass, Heat dissipation of parallel plates by free convection, Physica, vol. 9, pp. 2-28, 1942.
[4] E. M. Sparrow, A. Haji-Sheikh, T. S. Lundgren, The inverse problem in transient heat conduction, J. Appl. Mech., Vol. 31, pp. 369-375, 1964.
[5] A. Güvenç, H. Yüncü,“An Experimental Investigation on Performance of Fins on Horizontal Base in Free Convection Heat Transfer,”Heat Mass Transfer, vol. 37, pp. 409-416, 2001.
[6] A. Elatar, M. A. Teamah, M. A. Hassab, "Numerical study of laminar natural convection inside square enclosure with single horizontal fin, " International Journal of Thermal Sciences, vol. 99, pp. 41-51, 2016.
[7] S. Baskaya, M. Sivrioglu, M. Ozek, "Parametric study of natural convection heat transfer from horizontal rectangular fin arrays, " International Journal of Thermal Sciences, vol. 39, 8, pp. 797-805, 2000.
[8] F. Harahap, E. Rudianto, I. M. E. Pradnyana, "Measurements of steady-state heat dissipation from miniaturized horizontally-based straight rectangular fin arrays, " Heat and Mass Transfer, vol. 41, 3, pp. 280-288, 2005.
[9] F. Harahap, D. Setio,“Correlations for heat dissipation and natural convection heat-transfer from horizontally-based, vertically-finned arrays,”Appl. Energy, vol. 69, pp. 29-38, 2001.
[10] F. Harahap, H. Lesmana, I. K. T. Arya Sume Dirgayasa,“Measurements of heat dissipation from miniaturized vertical rectangular fin arrays under dominant natural convection conditions,”Heat Mass Transfer, vol. 42, pp. 1025-1036, 2006.
[11] M. Hasnaoui, P. Vasseur, E. Bilgen, “Natural convection in rectangular enclosures with adiabatic fins attached on the heated wall,”Wärme- und Stoffübertragung, vol. 27(1992),pp. 357-368.
[12] S. Nada, "Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate, " International Journal of Heat and Mass Transfer, vol. 50, 3-4, pp. 667-679, 2007.
[13] C. Leung, S. Probert, M. Shilston, " Heat exchanger design: Optimal uniform separation between rectangular fins protruding from a vertical rectangular base, " Applied Energy, vol. 19, 4, pp. 287-229, 1985.
[14] E. Arquis, M. Rady,“Study of natural convection heat transfer in a finned horizontal fluid layer,”Int. J. Thermal Science, vol. 44(2005), pp. 43-52.
[15] I. Tari, M. Mehrtash, Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks, J. Appl. Therm. Eng., vol. 61, pp. 728-736, 2013.
[16] N. C. Markatos, K. A. Pericleous, Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat Mass Transfer, vol. 27, pp. 755-772, 1984.
[17] 林明璋,矩形鰭片於空腔熱壁上之自然對流換熱特性研究,碩士論文,國立成功大學機械工程學系,2018
[18] 張弘迪,空腔內之熱壁上具穿孔鰭片的自然對流熱傳研究,碩士論文,國立成功大學機械工程學系,2019
[19] J. V. Beck, Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, vol. 62, pp. 46-51, 1962.
[20] J. V. Beck, Surface heat flux determination using an integral method, Nuclear Engineering Design, vol. 7, pp. 170-178, 1968.
[21] J. V. Beck, B. Litkouhi, C. R. Stclair, Efficient sequential solution of nonlinear inverse heat-conduction problem, Numer. Heat Transfer, vol. 5, pp. 275-286, 1982.
[22] A Direct Analytical Approach for Solving Linear Inverse Heat Conduction Problems, ASME J. Heat Transfer, vol 107(1985), pp. 700-703
[23] S.Sunil, J.R.N. Reddy, C.B. Sobhan, Natural convection heat transfer from a thin rectangular fin with a line source at the base – A finite difference solution. Int. J. Heat Mass Transfer, vol 31(1996), pp. 127-135
[24] E. Velayati, M.Yaghoubi, Numerical study of convection heat transfer from an arrays of parallel bluff plates, Int. J. Heat Fluid Flow, vol. 26, pp. 80-91, 2005.
[25] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transf. 109 (2017), pp. 378–392.
[26] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Effect of domain boundary set on natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transf. 109 (2017), pp. 668–682.
[27] H.T. Chen, H.C. Tseng, S.W. Jhu, J.R. Chang, Numerical and experimental study of mixed convection heat transfer and fluid flow characteristics of plate-fin heat sinks, Int. J. Heat Mass Transf. 111 (2017), pp. 1050–1062.
[28] H.T. Chen, Y.L. Chang, P.Y. Lin, Y.J. Chui, J.R. Chang, Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters, Int. J. Heat Mass Transf. 118 (2018), pp 931–947
[29] H.T. Chen, Ming-Chung Lin, Jiang-Ren Chang, Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall, Int J. Heat Mass Transf. 124(2018), pp. 1217-1229
[30] A. BeJan, Heat Transfer, John Wiley & Sons, Inc., New York,(1993), pp 53-62
[31] M.N. Özişik and H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor & Francis, New York, (2000)
[32] A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-posed Problems, V.H. Winston & Sons, Washington, DC, (1977).
[33] O.M. Alifanov, Inverse Heat Transfer Problem, Springer-Verlag, Berlin, (1994).
[34] J.V. Beck, B. Blackwell, C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, (1985).
[35] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C. G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluid A, vol 4, pp 1510-1520, 1992.
[36] I. Hideo, Experimental study of natural convection in an inclined air layer, Int J. Heat Mass Transf. 27(8) pp 1127-1139,1984.
[37] Peng Wang, Yonghao Zhang and Zhaoli, Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers, Int J. Heat Mass Transf. 113(2017) 217-228.
校內:2025-06-30公開