| 研究生: |
李巧謹 Li, Ciao-Jin |
|---|---|
| 論文名稱: |
非線性靜力側推分析與非線性增量動力分析之轉換關係研究-以C型中高樓扭轉不規則建築結構為例 Correlation between Nonlinear SPO2IDA-The Case of C-Shape Middle to High-Rise RC Building with Torsional Irregularity |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 295 |
| 中文關鍵詞: | 中高樓不規則建築 、非線性靜力側推分析 、增量非線性動力歷時分析 、倒塌易損性曲線 、SPO2IDA |
| 外文關鍵詞: | Irregular Middle to High Rise RC Building, Static pushover analysis, Incremental dynamic analysis, Fragility curve, SPO2IDA |
| 相關次數: | 點閱:127 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於台灣建築物耐震設計規範規定,建築物超過20公尺或5層以上之不規則建築物需進行非線性動力歷時分析,然而執行非線性動力歷時分析相當耗時,因此本研究將針對C型中高樓不規則建築物,透過執行非線性靜力側推分析與增量動力分析,取得容量曲線與增量動力分析曲線,探討其耐震能力,並發展兩者間之轉換關係。
文中首先使用ETABS軟體建立不同跨徑比之C型中高樓不規則建築模型,以軟體內建之ASCE 41-13塑鉸及國家地震中心與中興社合作開發之TEASPA V4.0塑鉸設置其塑鉸模型,執行非線性靜力側推分析,取得容量曲線,並判斷其耐震能力,比較不同塑鉸及跨徑比間之差異。接著,挑選地震歷時,再以軟體內建之ASCE 41-13塑鉸及國家地震中心開發之TEASDA塑鉸設置其塑鉸模型,執行增量動力分析,取得增量動力分析曲線,並建立倒塌易損性曲線,與非線性靜力側推分析結果進行耐震性能評估之比較。接著再說明FEMA P-58之SPO2IDA輔助工具及Università degli studi di Napoli Federico Ⅱ 研究團隊開發之SPO2FRAG程式之轉換方法,並將其轉換結果與實際之增量動力分析曲線比較。
研究結果顯示,透過改良FEMA P-58之SPO2IDA輔助工具,可使C型中高樓不規則建築物其容量曲線依照本研究之轉換方法,轉換出實際增量動力分析曲線。
Due to Seismic Design Specifications and Commentary of Buildings in Taiwan, irregular buildings over 20 meters or more than 5 stories need performing Dynamic analysis. However, performing dynamic analysis is quite time-consuming. Therefore, this research will focus on irregular C-shaped middle to high rise RC building. Obtain the capacity curve and incremental dynamic analysis curve by performing static pushover analysis (SPO) and incremental dynamic analysis (IDA). Explore earthquake assessment for structures and develop the conversion relationship between capacity curve and incremental dynamic analysis curve.
In this article, first used ETABS software to create irregular building models of C-shaped middle to high rise RC buildings with different span ratios. The plastic hinges of ASCE 41-13 built in the software and TEASPA V4.0 plastic hinges jointly developed by National Center for Research on Earthquake Engineering (NCREE) and Sinotech Engineering Consultants Incorporation (SEC) were used to set up the Hinge model, perform SPO, obtain capacity curve, and judge its seismic capacity, compare the difference between different plastic hinges and span ratios. Then, select the earthquake duration, set up its plastic hinge model with the built-in ASCE 41-13 plastic hinge of the software and the TEASDA plastic hinge developed by the NCREE, perform IDA, obtain the incremental dynamic analysis curve, and establish the collapse probability fragility curve is compared with the results of SPO for seismic performance evaluation. Then explain the conversion method of the SPO2IDA auxiliary tool of FEMA P-58 and the SPO2FRAG program developed by the research team of Università degli studi di Napoli Federico Ⅱ, and compare the conversion result with the actual incremental dynamic analysis curve.
[1] ATC-40, “Seismic Evaluation and Retrofit of Existing Concrete Building,” Applied Technology Council, 1996.
[2] ASCE 41-13, Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, 2014.
[3] Baker, J. W. “Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis,” Earthquake Spectra, Vol. 31, No. 1, pp. 579-599, 2015.
[4] Baltzopoulos, G., Baraschino, R., Iervolino, I. and Vamvatsikos, D., “SPO2FRAG: Software for seismic fragility assessment based on static pushover,” Bulletin of Earthquake Engineering, 15:4399-4425, 2017.
[5] Chopra, A. K., “Dynamics of Structures: Theory and Applications to Earthquake Engineering”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 2012.
[6] CSI Knowledge Base, Modal analysis, Computers and Structures, Inc. https://wiki.csiamerica.com/display/kb/Modal+analysis, 2019.
[7] Dowell, R. K., Seible, F., and Wilson, E. L. “Pivot Hysteresis Model for Reinforced ,” Structural Journal, Vol. 95, No. 5, pp. 607–617, 1998.
[8] FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, prepared by American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, DC, 2000.
[9] FEMA P-695, Quantification of Building Seismic Performance Factors, prepared by Applied Technology Council for the Federal Emergency Management Agency, Washington, DC, 2009.
[10] FEMA P-58, Seismic performance assessment of buildings, Federal Emergency Management Agency, 2012.
[11] Kreslin M. and Fajfar P., Seismic evaluation of an existing complex RC building, Bull Earthquake Eng. 8, 2010.
[12] Peter Fajfar, “A nonlinear analysis method for performance-based seismic design,” Earthquake Spectra, Vol.16, No. 3, 2000.
[13] PEER-TBI Task7 “Modeling and Acceptance Criteria for Seismic Design andAnalysis of Tall Buildings,” PEER Report No. 2010/111, 2010.
[14] Takeda, T., Sozen, M. A., Nielsen, N. N. (1970), “Reinforced Concrete Response to Simulated Earthquakes,” Journal of the Structural Division, Vol. 96, Issue 12, pp. 2557-2573.
[15] Vision 2000, “performance based seismic engineering of buildings,” San Francisco SEAOC, 1995.
[16] Vamvatsikos D. and Cornell CA., “Incremental Dynamic Analysis,” Earthquake Engineering and Structural Dynamics, 2002.
[17] Vamvatsikos D. and Cornell CA., “Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA,” Earthquake Engineering and Structural Dynamics, Vol.35, No. 9, pp.1097-1117, 2006.
[18] 丁育群、黃文曲,「九二一地震住宅重建回顧」,行政院九二一震災災後重建推動委員會,2016年。
[19] 中華民國內政部營建署,「建築物耐震設計規範及解說」,台北,2011年。
[20] 邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,「臺灣結構耐震評估與補強技術手冊(TEASPA V4.0)」,國家地震工程研究中心報告,NCREE-20-005,台北,2020年。
[21] 林冠禎、邱毅宗,「通報028:SERCB V5.1版後處理更新功能-結構容量震譜降伏點計算原則」,SERCB技術通報,第十期,頁8-14,2015年。
[22] 胡瑋秀,「台灣混凝土彈性模數折減對結構相關設計規範的影響研究」,國立臺灣大學碩士論文,2018年。
[23] 凌于哲,「鋼筋混凝土柱遲滯迴圈之模擬研究國立台灣大學碩士論文」,國立臺灣大學碩士論文,2019年。
[24] 國家地震工程研究中心,「九二一集集大地震全面勘災精簡報告」,國家地震工程研究中心報告,NCREE-99-033,台北,1999年。
[25] 國家災害防救科技中心、國家地震工程研究中心,「0206 地震災情彙整與實地調查報告」,國家災害防救科技中心報告,台北,2016年。
[26] 國家地震工程研究中心,「2018年2月6日花蓮地震勘災報告」,國家地震工程研究中心報告,NCREE-18-005,台北,2018年。
[27] 國家地震工程研究中心、中興工程顧問社,「臺灣結構耐震評估側推分析法TEASPA v4.0線上服務網頁使用手冊」,台北,2020年。
[28] 黃婕瑜「非線性靜力側推分析與非線性增量動力分析之轉換關係研究-以L型中高樓扭轉不規則建築結構為例」,成功大學土木工程學系碩士論文,2021年。
[29] 葉勇凱、周德光、蕭輔沛,「空間構架單一模態側推分析之探討」,國家地震工程研究中心,NCREE-11-029,台北,2011年。
[30] 葉勇凱、周德光,「以土木404-100設計例探討非線性靜力與動力分析」,國家地震工程研究中心,NCREE-16-013,台北,2016年。
[31] 劉光晏、盧煉元、蕭輔沛、陳慶輝、李官峰、胡曜騰、邱佳晨、黃慧佳,「應用非線性動力分析法於中高樓層軟弱層及扭轉不規則建築之詳細耐震能力評估」,第一版,內政部建築研究所,ISBN:978-986-5448-11-0,2019年。
[32] 蕭輔沛、蔡仁傑、翁樸文、沈文成、徐侑呈、周德光、翁元滔、簡文郁、林佳蓁、劉勛仁,「臺灣鋼筋混凝土結構耐震評估非線性動力分析手冊(TEASDA 1.0)」,國家地震工程研究中心報告,NCREE-21-001,台北,2021年。
[33] 謝瑋桓,「中高樓建築機率式耐震與倒塌風險評估之研究」,成功大學土木工程學系碩士論文,2017年。
[34] 謝瑋桓、盧煉元、蕭輔沛、湯宇仕、黃尹男「中高樓結構機率式倒塌風險評估法之應用研究」,結構工程,第三十三卷,第二期,頁89-120,2018年。