| 研究生: |
劉政典 Liu, Cheng-Tien |
|---|---|
| 論文名稱: |
鹽水地層二氧化碳封存量估算之研究 Estimation of CO2 Storage Capacity in Saline Aquifer |
| 指導教授: |
林再興
Lin, Zsay-Shing |
| 共同指導教授: |
謝秉志
Hsieh, Bing-Zhi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 二氧化碳封存量 、地質封存 、鹽水地層 |
| 外文關鍵詞: | CO2 Storage Capacity, Saline Aquifer, geological sequestration |
| 相關次數: | 點閱:123 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳的排放是造成全球暖化的主要原因之一。為了減緩溫室效應對環境帶來的影響,必須減少二氧化碳排放至大氣中的量,有許多方法可以減少人為二氧化碳的排放,其中最有效的方法為二氧化碳地質封存,地質封存的選項中,又以鹽水地層的二氧化碳封存潛能為最大(可封存二氧化碳量最多,估計全球有0.3~10兆噸的二氧化碳封存量)(IEA, 2001)。
本研究主要目的是利用解析法及數值法,估算T氣田淺部的目標鹽水地層(U構造),所能封存的二氧化碳總量。首先,利用解析法(體積法及壓縮法)對目標鹽水地層(U構造)進行二氧化碳封存量的估算,然後,利用數值法(CMG公司的GEM成分模式)建立U構造的數值模式,完成數值模式的驗證後,利用此數值模式進行二氧化碳封存量的模擬計算,並由數值模擬找出最佳注儲策略,以供現場操作參考。
本研究由解析法所得到的二氧化碳封存量為0.11~6.5億噸,由數值法所得到的二氧化碳封存量為3.43~6.4億噸,另外,數值模擬得到有效封存因子(CC)約為0.53~0.88,此因子可以應用於目標鹽水地層計算有效封存量之用。
Carbon dioxide capture and storage technology (CCS) is an effective method to control the emission of CO2 from source, such as power plant. Geological sequestration of CO2 in a saline aquifer in CCS is currently the most effective way to moderate global warming.
The purpose of this study is to estimate CO2 storage capacity in a saline aquifer of Y-formatio of U-structure in T gas field. Both analytical method and numerical method are used in the estimation.
In using analytical methods, both volumetric and compressibility approaches are used separately to estimate CO2 storage capacity in Y-formation of U-structure. The storage capacity from analytical methods is ranging from 11 to 650 million tons.
In using numerical method, GEM compositional simulator is used. Grid model is set up from inputting the reservoir parameters of the saline aquifer. After checking the validation of the model, simulation studies are conducted for both constant rate injection and constant pressure injection.The storage capacity from numerical method ranging from 343 to 640 million tons. And storage capacity factor is 0.53~0.88, depending on CO2 injecting operations, and location of injecting wells.
參考文獻
1. Abdus, S., Ghulam, M.I., and James, L.B., Practical enhanced reservoir engineering:assisted with simulation software, PennWell Corporation, Tulsa, Oklahoma, (2007).
2. Akaku, K., “Numerical Simulation of CO2 Storage in Aquifers without Trapping Structures,” Paper (IPTC 12304) presented at the International Petroleum Technology Conference held in Kuala Lumpur, Malaysia, (December 2008).
3. Bachu, S., and Stewart, S., “Geological sequestration of anthropogenic carbon dioxide in the Western Canada Sedimentary Basin: suitability analysis,” Journal of Canadian Petroleum Technology, Vol 41, p.32-40, (2002).
4. Bachu, S. and Adams, J.J., “Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution,” Energy Conversion and Managagement, Vol 44, p.3151-3175, (2003a).
5. Bachu, S., “Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change,” Environmental Geology, Vol 44, p.277-289, (2003b).
6. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., and Mathiassen, O.M., “CO2 storage capacity estimation:Methodology and gaps,” International Journal of Greenhouse Gas Control, Vol 1, Elsevier, p.430-443, (2007).
7. Bradshaw, J., Bachu, S., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N.P., and Mathiassen, O.M., “CO2 storage capacity estimation-issues and development of standards,” International Journal of Greenhouse Gas Control, Vol 1, Elsevier, p.62-68, (2007).
8. CCSTRM, “Carbon Dioxide Capture and Storage Technology Roadmap,” (CCSTRM) Workshop, Calgary, Alberta, 2006.
9. Charles, D.G., James, A.S., Jordan, M.B., Damion, J.K., Steven, A.S., Edward, N.S., and John, A.H., “Development of Storage Coefficients for Determining the Effective CO2 Storage Resource in Deep Saline Formations,” Paper (SPE 126444) presented at the 2009 SPE International Conference on CO2 capture, storage, and Utilization held in San Diego, California, USA, (November, 2009).
10. CMG, User’s Guide GEM Advanced Oil/Gas Reservoir Simulator, Computer Modelling Group Ltd., Calgary, Alberta, (2009).
11. CSLF, “Estimation of CO2 storage capacityin geological media-Phase II report,” Prepared by the Task Force on CO2 Storage Capacity Estimation for the Technical Group of the Carbon Sequestration Leadership Forum (CSLF), (June 2007).
12. DOE, “Methodology for Development of geological storage estimates for carbon dioxide,” Report on the 2008 Carbon Dioxide Atlas of the United States and Canada, Prepared by Capacity and Fairways Subgroup Of the Geologic Working Group Of the DOE Regional Carbon Sequestration Partnerships, (2008).
13. Doughty, C., Pruess, K., Benson, S., Hovorka, S., Knox, P. and Green, C., “Capacity investigation of brine-bearing sands of the Frio-Formation for geological sequestration of CO2,” Presented at the First National Conference on Carbon Sequestration, U.S. Department of Energy, National Energy Technology Laboratory, (2001).
14. Gupta, N., Sass, B., Chattopadhyay, S., Sminchak, J., Wang, P., and Espie, T., “Geologic storage of CO2 from refining and chemical facilities in the midwestern US,” Energy, Vol 29, p.1599-1609, (2004).
15. IEA, CO2 Capture and Storage – A Key carbon abatement option, (2008).
16. IEA, CO2 Emissions from Fuel Combustion Highlights, (2009).
17. IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, (2005).
18. IPCC, Fourth Assessment Report (AR5), (2009).
19. IPCC, Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, New York, (2005).
20. Jin, M., Pickup, G. and Mackay, E., “Static and Dynamic Estimates of CO2 storage capacity in two Saline Formations in the UK,” Paper (SPE 131609) presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition held in Barcelona, Spain, (June 2010).
21. Juanes, R., Spiteri, E.J., Orr, F.M., and Blunt, M.J., “Impact of relative permeability hysteresis on geological CO2 storage,” Water Resources Research, Vol 42, (2006).
22. Klara, S.M., Srivastava, R.D., and McIlvried, H.G., “Integrated collaborative technology development program for CO2 sequestration in geologic formations,” United States Department of Energy R&D, Energy Conversion and Management, Vol 44, p.2699-2712, (2003).
23. Kopp, A., Class, H., and Helmig, R., “Investigations on CO2 storage capacity in saline aquifers-Part 2: Estimation of storage capacity coefficients,” International Journal of Greenhouse Gas Control, Vol 3, Elsevier, p.277-287, (2008).
24. Kumar, A., Noh, M.H., Sepehrnoori, K., Pope, G.A., Bryant, S.L., and Lake, L.W., “Reservoir Simulation of CO2 Storage in Deep Saline Aquifers,” SPE Journal, p.336-348, (2005).
25. Land, C.S., “Calculation of Imbibition Relative Permeability for Two- and Three-Phase Flow from Rock Properties,” SPE Journal, p.149-156, (1968).
26. Nghiem, L., Shrivastava, V., Kohse, B., Hassam, M., Yang, C., “Simulation of Trapping Processes for CO2 Storage in Saline Aquifers,” Presented at the 2009 Canadian International Petroleum Conference held in Calgary, Alberta, Canada, (June 2009)
27. Peng, D.Y., and Robinson, D.B., “A New Two Constant Equation of State,” Industrial and Engineering Chemistry Fundamentals., Vol 15, p.59-64, (1976).
28. van der Meer, L.G.H., and Egberts, P.J.P., “A general method for calculating subsurface CO2 storage capacity,” Paper (OTC 19309) presented at the 2008 Offshore technology conference held in Houston, Texas, U.S.A., (May 2008).
29. Zhou, Q., Birkholzer, J.T., Tsang, C.F. and Rutqvist, J., “A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations,” International Journal of Greenhouse gas control, Vol 2, Elsevier, p.626-639, (2008).
30. 經濟部能源局,二氧化碳再利用技術及地質封存潛能評估計畫,2007。
31. 經濟部中央地質調查所,我國二氧化碳地質封存技術研究發展規畫,2009。
32. 呂明達、宣大衡、黃雲津、范振暉,「台灣陸上二氧化碳地質封存潛能推估」,礦冶,第52 卷,第三期,第154~161 頁,2008。