簡易檢索 / 詳目顯示

研究生: 余佩怡
Yu, Pei-Yi
論文名稱: 以商品查詢詞推測使用者購買需求並推薦適合活動以及搭配商品
Predict Purchasing Needs behind User Queries to Recommend Activity-Goods Pairs
指導教授: 盧文祥
Lu, Wen-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 使用者需求需求分析需求預測活動推薦
外文關鍵詞: User Need, Need Analysis, Need Prediction, Activity Recommendation
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用者需求的預測是現在重要的議題之一,知道使用者的需求就可以根據使用者的需求給予相關的資料與幫助。在我們的研究中,我們想要根據使用者想要購買商品的商品查詢詞來預測使用者的購買需求並推薦適合的活動與搭配商品。例如,有個使用者想要購買跑鞋而在搜尋引擎上搜尋「跑鞋」找相關商品,我們推測此使用者是因為要參加馬拉松或是有慢跑的習慣因此要買跑鞋,因此,「馬拉松」、「慢跑」為我們預測的使用者需求,根據「馬拉松」、「慢跑」這個使用者需求我們推薦「馬拉松比賽」、「慢跑比賽」與「運動手環」、「毛巾」等搭配商品給使用者。
    我們觀察到部落格文章關於購買商品的有可能含有使用者需求。除此之外,我們也發現拍賣網站上的商品標題也含有使用者需求。因此我們提出利用分析商品查詢詞、部落格文章與拍賣網站上的商品標題來預測使用者需求。在我們的研究中,我們將使用者需求分為三個面向,分別為Style,Entity 與 Action。我們利用條件隨機域來標記部落格文章與商品標題進而找出這三個面向的使用者需求,根據需求找出合適的活動與搭配商品並推薦給使用者。

    User need prediction is an important problem, as it will largely improve user experience such as saving user efforts. In our work, we want to predict users’ purchasing needs according to queries about purchasing goods and recommend suitable activity-goods pairs. For example, a user wants to purchase running shoes and issues the query “running shoes” on a search engine to search goods. We surmise that this user purchase running shoes for running a marathon or having a jogging habit. Therefore, “marathon” and “jogging” are user needs that we predict. Moreover, for user needs “marathon” and “jogging”, we recommend activities such as “marathon competitions” and “jogging competitions” and matching goods such as “sport wristbands” and “towels” to the user.
    We observed blog articles and found that blog articles about purchasing goods are always contain user needs. Moreover, titles from auction websites are contain user needs as well. Therefore, we proposed to predict user needs via analyzing queries, blog articles and titles from auction websites. In our work, We classified user needs in to three aspects: style, entity and action. We employed Conditional Random Field (CRF) to label blog articles and titles rom auction websites and further discover user needs of the three aspects. Further, we find suitable activity-goods pairs and recommend them to users.

    摘要 i Abstract ii 致謝 iv Table of Contents v List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 1 1.3 Methodology 2 1.4 Contributions 3 1.5 Organization of this Dissertation 4 Chapter 2 Related Work 5 2.1 Search Need behind Search Queries 5 2.2 Predicting users’ Search needs 6 2.3 Activity-Goods Recommendation 7 Chapter 3 Method 9 3.1 Observation 9 3.1.1 Observation of queries 9 3.1.2 Observation of user needs 11 3.1.3 Three aspects of user needs 13 3.2 System Architecture 14 3.3 Main-Goods Identification 15 3.3.1 Main-Goods Retrieval 16 3.3.2 Queries Identification 17 3.4 User Need Prediction 18 3.4.1 User Need Analysis 18 3.4.2 User Need Discovery 19 3.4.3 User Needs Ranking 26 3.5 Activity-Goods Pairs Matching 28 3.5.1 Activity-Goods Pairs 28 3.5.2 Measure of Similarity 29 3.6 Activity-Goods Pairs Recommendation 35 3.6.1 Activity Scores Calculating 35 3.6.2 Activity-Goods Pairs Ranking 38 Chapter 4 Experiments 39 4.1 User Need Discovery 39 4.1.1 Experiment Setup 39 4.1.2 The Performance of User Need Discovery 45 4.2 Activity-Goods Pairs Matching 57 4.2.1 Experiment Setup 58 4.2.2 The Performance of Activity-Goods Pairs Matching 60 4.3 Activity-Goods Pairs Recommendation 62 4.3.1 Experiment Setup 63 4.3.2 The Performance of Activity-Goods Pairs Recommendation 66 Chapter 5 Conclusions & Future Work 67 5.1 Conclusions 67 5.2 Future Work 67 Reference 69

    [1] Broder A., 2002. A Taxonomy of Web Search. SIGIR Forum 36, 2, 3-10
    [2] Rose, D.E., Levinson, D, 2004. Understanding user goals in web search. In: International conference on WWW, ACM Press 13–19
    [3] Jansen B. J., Booth D. L., Spink A., 2007. Determining the User Intent of Web Search Engine Queries, Proceedings of the 16th international conference on World Wide Web ACM, pp. 1149-1150,
    [4] Baeza-Yates R., Calder´on-Benavides L. and Gonz´alezCaro C, 2006. The Intention Behind Web Queries. In Proceedings of String Processing and Information Retrieval. Glasgow, Scotland, 98-109
    [5] Guo Q., Agichtein E., 2008.Exploring mouse movements for inferring query intent. Proc. 31st international ACM SIGIR, pp. 707-708
    [6] Hu, J., Wang, G., Lochovsky, F., Sun, J. and Chen, Z, 2009. Understanding user's query intent with wikipedia. 18th International Conference on World Wide Web, Madrid, Spain, April 20-24, 471-480.
    [7] Cao, H., Hu, D. H., Shen, D., Jiang, D., Sun, J.-T., Chen, E., and Yang, Q, 2009. Context-Aware Query Classification, In Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development on Information Retrieval, pp. 3-10
    [8] Kong W., Li R., Jie L., Zhang A., Chang Y. and Allan J, 2015. Predicting Search Intent Based on Pre-Search Context, In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval
    [9] Chang, Y.-S., He, K.-Y., Yu, S. and Lu, W.-H, 2006. Identifying user goals from Web search results. Proc. WWW, 1038-1041
    [10] Sarwar B., Karypis G., Konstan J., and Riedl J., 2000. Analysis of recommendation algorithms for e-commerce. In Proceedings of ACM E-Commerce
    [11] Karypis G, 2001. Evaluation of item-based top-n recommendation algorithms. In Proceedings of the Tenth International Conference on Information and Knowledge Management, pages 247–254
    [12] Chen, W.-C., Cheng, Y.-M., Sandnes, F. E., et al., 2011. Finding Suitable Candidates: The Design of a Mobile Volunteering Matching System, In: Jacko, J.A., editor HCI (3), Springer 2011., 21-29
    [13] Jansen, B. J., Spink, A. and Saracevic, 2000. T. Real Life, Real Users, and Real Needs: A Study and Analysis of User Queries on the Web. Information Processing & Management. 36, 2, 207- 227
    [14] Filip R., Martin S., and Nick C., 2010. Inferring query intent from reformulations and clicks. In Proceedings of the 19th international conference on World wide web, pages 1171–1172. ACM
    [15] Downey D., Dumais S., Liebling D., and Horvitz E., 2008. Understanding the Relationship between Searchers' Queries and Information Goals, Proc. 17th ACM Conf. Information and Knowledge Management, pp. 449-458
    [16] John D. L., Andrew M., and Fernando C. N. Pereira., 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML ’01: Proceedings of the Eighteenth International Conference on Machine Learning, pages 282–289
    [17] Hanna M. Wallach. 2004. Conditiondal Randiom Fields: An Introduction. Technical Report MS-CIS-04-21. Department of Computer and Information Science, University of Pennsylvania
    [18] Roman K., Katrin T., Liu Y., Shriberg E., Stolcke A., and Harper M., 2005. Comparing HMM, Maximum Entropy 42 and Conditional Random Fields for Disfluency Detection. Proceeding of Eurospeech
    [19] Charles S. and Andrew M., 2006. An Introduction to Conditional Random Fields for Relational Learning. In “Introduction to Statistical Relational Learning .” Edited by Lise Getoor and Ben Taskar. MIT Press
    [20] CRF++: Yet Another CRFtoolkit:http://crfpp.sourceforge.net/
    [21] Pixnet Blog : https://www.pixnet.net/blog
    [22] Lafferty, John, A. McCallum, and F. Pereira. 2001. Conditional Random Field: Probabilistic Models for Segmenting and Labeling Sequence Data. In ICML 18.
    [23] Settles, B., 2004. Biomedical Named Entity Recognition Using Conditional Random Fields and Rich Feature Sets. Proceedings of the COLING 2004 International Joint Workshop on Natural Language Processing in Biomedicine and its Applications
    [24] Sutton, C. and A. McCallum., 2007. An Introduction to Conditional Random Fields for Relational Learning. Introduction to Statistical Relational Learning, MIT Press.
    [25] Wallach, H.M., 2004. Conditional Random Fields: An Introduction. University of Pennsylvania CIS Technical Report MS-CIS-04-21.
    [26] Coyle, L., Cunningham, P., 2004. Improving recommendation ranking by learning personal feature weights. In: Funk, P., González Calero, P.A. ECCBR

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE