| 研究生: |
鄭利保 Jheng, Li-Pao |
|---|---|
| 論文名稱: |
改變化學組成與添加Bi-B-Zn-Si玻璃對 Co2Z 鐵氧磁體燒結行為、磁及介電性質之影響 Effects of chemical composition variation and Bi-B-Zn-Si glass addition on sintering behavior, magnetic and dielectric properties of Co2Z hexaferrite |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 低溫燒結 、六方晶系鐵氧磁體 、Co2Z |
| 外文關鍵詞: | LTCC, hexaferrite, Co2Z |
| 相關次數: | 點閱:59 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於所有電子產品均朝輕薄短小發展,故電感大多改成積層型式。在製作積層電感時,磁性材料必須要與內部之金屬導體銀共燒,因此燒結溫度必須低於銀的熔點(961℃)。迄今為止,研究較多的低溫燒結鐵氧磁體是 NiCuZn 鐵氧磁體,並已成為目前積層晶片電感所廣泛採用的磁介質材料。但由於受到Snoek’s 極限的影響,NiCuZn 鐵氧磁體只能在頻率小於100MHz的頻段以下才能使用。要在超過100MHz以上的頻段使用,需仰賴擁有高自然共振頻率的六方晶系鐵氧磁體。
高頻及微波用之軟磁性六方晶系鐵氧磁體Co2Z 需在1200℃以上才能燒結緻密,此材料若欲做成積層晶片電感,可低溫燒結的高頻之軟鐵氧磁體之開發就變得非常重要。
本研究藉由改變化學組成以改善Co2Z 的磁性質,藉由添加BB35SZ玻璃降低Co2Z之燒結溫度,期能在 < 900℃溫度下燒結緻密。由實驗結果發現:
(1) Co2Z固溶愈多離子時,於低溫燒結時越容易產生二次相。
(2) 當玻璃添加量越多,Co2Z愈容易分解產生 M 相與其他二次相(U+S)。
(3) y=0.2 x=0.1 之配比經添加2wt% BB35SZ玻璃後,以900℃燒結2h,可
得較佳之磁性質(μ’ = 3.4,Q = 11)
The trends for electric devices were light and slim, most inductors were produced in multilayer form. In multilayer process, ferrite will co-fire with the inner electrode - silver. So the sintering temperature must be lower than the melting point of silver. Most low temperature co-fire ferrite investigations have focus on Ni-Cu-Zn ferrite, but the initial permeability of Ni-Cu-Zn ferrite will decrease dramatically while the frequency is higher than 100MHz due to Snoek's limit. So in higher frequency applications, Ni-Cu-Zn ferrite was substituted by hexa-ferrites.
Microwave inductor, hexa-ferrite Co2Z must sinter above 1200℃, it is unfavorable for multilayer process, because the sintering temperature is higher than the melting point of silver. So we should lower the sintering temperature of Co2Z.
In this study, we envisage improving magnetic properties by varying chemical composition, and decrease the sintering temperature below 900℃ by adding BB35SZ glass. The experiment results exhibit:
(1) At lower sintering temperature, added excess soluble ions in Co2Z will cause second phase formation.
(2) When more BB35SZ glass was added, Co2Z will decompose to M phase and other second phases such as U phase or S phase.
(3) Samples have compositions 3(Ba0.9Bi0.1O).2(Co0.8Cu0.2O).12(Fe1.957Zn0.025O3) and added 2wt% BB35SZ glass sinter at 900℃ for 2 hours can get better magnetic properties. (μ’=3.4, Q=11)
1. 王志方,「LTCC產業概況」,IBT台灣工商銀行研究中心(2008)。
2. 姚壬謙,「化學共沉法製備Co2Z 鐵氧磁體粉末之生成機構研究」,國立成功大學資源工程研究所,碩士論文(2004)。
3. 山口喬、柳田博明、剛本祥一、近桂一郎,「磁性陶瓷」,黃忠良譯,復漢出
版社,台灣,(2001)。
4. 盧盈靜,「鋇、鋁的添加對La2/3Ca1/3MnO3之導電機構及磁阻效應之影響」,國立成功大學材料科學及工程研究所,碩士論文(2002)。
5. S. Chikazumi, Physics of Ferromagnetism, 2nd Ed., Oxford University Press Inc., New York(1997).
6. T. Tachibana, T. Nakagawa, Y. Takada, K. Izumi, T.A. Yamamoto, T. Shimada, and S. Kawano, “X-ray and Neutron Diffraction Studies on Iron-Substituted Z-type Hexagonal Barium Ferrite: Ba3Co2−xFe24+xO41 (x=0-0.6),” J. Magn. Magn. Mater., 262, 248-57(2003).
7. O. Kimura, “Magnetic of Co2Z for Ultra High Frequency Uses,” Techna. Srl. 2697-704 (1995).
8. S. H. Gee, Y. K. Hong, I. T. Nam, C. Weatherspoon, A. Lyle, and J. C. Sur, “Ba3Co0.8Zn1.2Fe24O41 (Co2Z-Type) Hexaferrite Particles for LTCC Substrates,” IEEE Trans. Magn., 42, 2843-5(2006).
9. T. Nakamura and K. Hatakeyama, “Complex permeability of polycrystalline hexagonal ferrites,” IEEE Trans. Magn., 36, 3415-7(2000).
10. X. H. Wang, L. T. Li, Z. X. Yue, S. Y. Su, Z. L. Gui, and J. Zhou, “Preparation and magnetic characterization of the ferroxplana ferrites Ba3Co2-xZnxFe24O41,” J. Magn. Magn. Mater., 246, 434-9(2002).
11. H. G. Zhang, L. T. Li, Y. L. Wang, J. Zhou, Z. X. Yue, and Z. L. Gui, “Low-Temperature Sintering and Electromagnetic Properties of Copper-Modified Z-type Hexaferrite,” J. Am. Ceram. Soc., 85, 1180-4(2002).
12. 李廷濬,「氧化鉛-氧化銅玻璃添加劑對Co2Z六方晶系鐵氧磁體燒結及磁性質影響之研究」,義守大學材料科學與工程研究所,碩士論文(2004)。
13. H. G. Zhang, L. T. Li, J. Zhou, Z. X. Yue, and Z. L. Gui, “Low-temperature sintering, densification, and properties of Z-type hexaferrite with Bi2O3 additive,” J. Am. Ceram. Soc., 84, 2889-94(2001).
14. X. H. Wang, L. T. Li, S. Y. Su, and Z. X. Yue, “Electromagnetic properties of low-temperature-sintered Ba3Co2-xZnxFe24O41 ferrites prepared by solid state reaction method,” J. Magn. Magn. Mater., 280, 10-3(2004).
15. O. Kimura, K. Shoji, and H. Maiwa, “Low temperature sintering of iron deficient Z type hexagonal ferrites,” J. Eur. Ceram. Soc., 26, 2845-9(2006).
16. X. H. Wang, L. T. Li, S. Y. Shu, Z. X. Yue, Z. W. Ma, and J. Zhou, “Low-temperature sintering of Z-type hexaferrite for application in MLCIs,” Mater. Lett., 55, 8-11(2002).
17. X.H. Wang, L.T. Li, S.Y. Su, Z.L. Gui, Z.X. Yue, and J. Zhou, “Low-temperature sintering and high frequency properties of Cu-modified Co2Z hexaferrite,” J. Eur. Ceram. Soc., 23, 715-20(2003).
18. 陳泰豪,「低溫共燒型介電-磁性陶瓷複合材料」,國立成功大學資源工程研究所,碩士論文(2007)。
19. 林寬泓,「Mo 元素對液相燒結W-Ni-Fe 重合金顯微結構影響之研究」,國立臺灣科技大學機械工程研究所,博士論文(2006)。
20. R. M. German, Liquid phase sintering, Plenum Press, New York(1985).
21. M. Z. Jhou, and J. H. Jean, “Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO-ZnO-B2O3 Glass ” J. Am. Ceram. Soc., 89, 3, 786-91(2006).
22. 楊朝偉,「巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留」,國立成功大學材料科學及工程研究所,碩士論文(2006)。
23. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to ceramics, 2nd Edition, John Wiley & Sons, New York(1976).
24. O. T. Ozkan, H. Erkalfa, and A. Yildirim, “The effect of B2O3 addition on the Direct Sintering of Barium Hexaferrite,” J. Europ. Ceram. Soc., 14, 351~8(1994).
25. 康閎竣,「超薄Co膜成長於Pt(111)之表面與磁性的研究」,國立中山大學物理研究所,碩士論文(2007)。
26. 鄭振東,「實用磁性材料」,全華科技圖書,pp. 2-24∼2-28。
27. P. Lubitz, “New substitution in the hexagonal ferrites to reduce anisotropy without using Co ,” J. Appl. Physi., 87, 4978~80(2000).
28. D. Lisjak, P. McGuiness, and M. Drofenik, “Influence of Ag on the Composition and Electromagnetic Properties of Low-Temperature Cofired Hexaferrites,” J. Am. Ceram. Soc., 90, 3121-6(2007).
29. D. Lisjak and M. Drofenik, “Thermal Stability of (Co,Cu)Z-Hexaferrite and Its Compatibility with Ag at 900℃, ” J. Am. Ceram. Soc., 90, 3517-21(2007).
30. H. G. Zhang, L. T. Li, J. Zhou, Z. W. Ma, P. G. Wu, Z. X. Yue, and Z. L. Gui, “Magnetic behavior of different modifications in low-fired Z-type polycrystalline hexaferrite,” Mater. Lett., 46, 315-9(2000).
31. H. G. Zhang, J. Zhou, Y. L. Wang, L. T. Li, Z. X. Yue, and Z. L. Gui, “Dielectric characteristics of novel Z-type planar hexaferrite with Cu modification,” Mater. Lett., 55, 351-5(2002).
32. X.H. Wang, T.L. Ren, L.T. Li, Z.L. Gui, S.Y. Su, Z.X. Yue, and J. Zhou, “Synthesis of Cu-modified Co2Z hexaferrite with planar structure by a citrateprecursor mothod, ” J. Magn. Magn. Mater., 234, 255-60(2001).
33. H. G. Zhang, J. Zhou, Y. L. Wang, L. T. Li, Z. X. Yue, X. H. Wang, and Z. L. Gui, “Investigation on physical characteristics of novel Z-type Ba3Co2(0.8-x)Cu0.40Zn2xFe24O41 hexaferrite,” Mater. Lett., 56, 397-403(2002).
34. X. H. Wang, L. T. Li, S. Y. Su, and Z. L. Gui,“Novel Ferrimagnetic Material for Fabricating Multilayer Chip Inductors — Low-Temperature-Sintered Ba3Co2-xZnxFe24O41 Hexaferrites,” J. Am. Ceram. Soc., 88, 478-80(2005).
35. 梅立人,「添加LiF對CaCu3Ti4O12的介電、導電和顯微結構的影響」,國立成功大學資源工程研究所,碩士論文(2006)。
36. J. E. Burke, Ceramic Fabrication Processes, Edited by W. D. Kingery, Wlley, New York(1958).
校內:2012-08-27公開