簡易檢索 / 詳目顯示

研究生: 吳佳恩
Wu, Chia-En
論文名稱: 摻雜改質/未改質多壁奈米碳管於扭轉向列型液晶盒之光電響應研究(II)
The electro-optical responses of twisted nematic liquid crystal cell blended with modified and non-modified MWCNTs (II)
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 奈米碳管扭轉向列型液晶盒光電響應
外文關鍵詞: Carbon nanotube, Twisted Nematic Cell, Electro-Optical Response
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電漿表面處理技術,將無機奈米碳管表面有機化改質,克服其自身的凡得瓦力提升在有機相的相容性,應用於扭轉向列型液晶盒探討其光電響應。
    首先,利用電漿表面處理技術將馬來酸酐分子接枝於奈米碳管表面上,接著將向列型液晶與奈米碳管表面上的馬來酸酐反應,製成表面具有液晶接枝結構的奈米碳管,以提升奈米碳管於奇美液晶中的分散性。本文利用XPS儀器鑑定液晶接枝於奈米碳管上的百分率為18.5 wt%。接著把奈米碳管摻雜於奇美電子公司所提供的商用液晶溶液中,配置不同濃度的比例並注入扭轉向列型液晶盒中,觀察其分散效果並量測其光電性質。實驗結果顯示,奈米碳管表面經過有機化改質後,可以大大提升其於液晶中的分散性;且經由液晶參數儀的量測可得知,奈米碳管的混摻會增加液晶的介電係數、降低旋轉黏滯係數。奈米碳管的添加可有效降低液晶中的離子濃度達49%(未改質奈米碳管只降低38%),以減少離子效應;並可使得液晶的反應時間(上升時間與下降時間)降幅達27%(未改質奈米碳管降低19%)。不過,由於奈米碳管的添加,會降低液晶的光穿透強度,有經過改質的奈米碳管只降低19%(未改質奈米碳管降低30%)。而從這些實驗結果顯示,有經過表面液晶接枝改質的奈米碳管可有效提升奈米碳管於液晶中的分散性,其光電響應的效果也比較優越。

    This study employed plasma method to prepare the functionalized carbon nanotubes(CNTs) in order to overcome the intrinsic van der Waals force of CNTs and improve the solubility as well as the dispersion in the solvent. The electro-optical responses of the twisted liquid crystal cell (TN cell) incorporated with these plasma-modified CNTs were investigated.
    First of all, we prepared the CNTs that have treated by the plasma then grafted the maleic anhydride(MA) on the surface of the CNTs. We chose a liquid crystal molecular that can well disperse in the liquid crystal provided by the CHI-MEI company(CMI-LC). Then, the liquid crystal molecular grafted to the modified CNTs. We identified those molecular with XPS and calculated the ratio of the grafting. Secondly, we blended the modified and non-modified CNTs to the CMI-LC at different concentrations and injected to the TN cell to measure the ion density、response time、T-V Curve and some physical parameters.
    The results showed that the modified CNTs can improve the dispersion in the CMI-LC, and increase the dielectric anisotropy、decrease the rotational viscosity. The modified CNTs can decrease the ion density of CMI-LC about by 49%(non-modified CNTs only decreased 38%) and decrease the response time about by 27%(non-modified CNTs was 19%). But, the added of CNTs into the CMI-LC will lower the transmittance, so modified CNTs only decreased about by 19% (non-modified CNTs decreased about 30%).
    As a conclusion, Because the modified CNTs can improve the dispersion in the CMI-LC, it showed improved performance in the electro-optical response.

    中文摘要 I ABSTRACT II 致謝 III 總目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧 4 2-1 奈米碳管 4 2-1-1 奈米碳管發展簡介 4 2-1-2 奈米碳管的結構及特性 5 2-1-3 奈米碳管的表面改質 6 2-1-3-1 非共價性物理改質(noncovalent interaction) 6 2-1-3-2 共價性化學改質(covalent approach) 7 2-1-4 奈米碳管的應用 10 2-1-4-1 電子材料及元件 10 2-1-4-2 儲能、儲氣材料 10 2-1-4-3 場發射 12 2-1-4-4 奈米材料基板 13 2-2 液晶 15 2-2-1 液晶簡介 15 2-2-2 液晶的種類 16 2-2-2-1 熱致型液晶 16 2-2-2-2 溶致型液晶 19 2-2-3 液晶的化學結構 20 2-2-4 扭轉向列型(twisted nematic, TN)液晶盒 24 2-2-5 液晶的物理性質 26 2-2-5-1 秩序參數(order parameter, S) 26 2-2-5-2 雙折射率(birefringence,△n ) 28 2-2-5-3 彈性係數(elastic constant, Kii) 28 2-2-5-4 介電常數(dielectric anisotropy, △ε) 30 2-2-6 液晶的光電性質 30 2-2-6-1 液晶的反應時間(response time) 30 2-2-6-2 液晶的臨界電壓(threshold voltage, Vth) 32 2-2-6-3 液晶的離子效應 33 2-2-7 液晶中摻雜奈米粒子 35 第三章 實驗內容 37 3-1 實驗藥品 37 3-2 實驗儀器 37 3-3 實驗步驟 38 3-3-1 電漿改質法 38 3-3-2 化學活化法 39 3-4 光電性質儀器裝置 42 3-4-1 液晶盒樣品 42 3-4-2 光電效應量測 42 第四章 奈米碳管表面改質 44 4-1 奈米碳管接枝馬來酸酐 44 4-2 奈米碳管接枝液晶分子 51 第五章 奈米碳管混摻於液晶中之光電效應研究 59 5-1 液晶的反應時間 60 5-2 液晶的離子濃度 70 5-3 光穿透度與電壓的關係 75 第六章 結論 83 參考文獻 85

    1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162-163, 1985.
    2. 洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49卷,23-30,2002。
    3. http://www.nanotechnologies.qc.ca/projets/nanotubes/
    4. C. H. Chen, Q. Cai, C. Tsai, C. L. Chen, G. Xiong, and Y. Yu, Applied Physics Letters 90, 173108-17310, 2007.
    5. E. T. Thostenson, Z. Ren, and T. W. Chou, Composites Science and Technology 61, 1899-1912, 2001.
    6. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Academic, 1996.
    7. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, Journal of the American Chemical Society 123, 3838-3839, 2001.
    8. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemical Reviews 106, 1105-1136, 2006.
    9. B. K. Price, J. L. Hudson, and J. M. Tour, Journal of the American Chemical Society 127, 14867, 2005.
    10. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Loano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Journal of Physical Chemistry B103, 4318-4322, 1999.
    11. D. H. Jung, Y. K. Ko, and H. T. Jung, Materials Science and Engineering C24, 117- 121, 2004.
    12. B. Olalde, J. M. Aizpurua, A. Garcı´a, I. Bustero, I. Obieta, and M. J. Jurado, Journal of Physical Chemistry C112, 10663-10667, 2008.
    13. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature 386, 377-379, 1997.
    14. R. Zacharia, K. Y. Kim, A. K. M. Fazle Kibria, and K. S. Nahm, Chemical Physics Letters 412, 369-375, 2005.
    15. F. H. Yang, A. J. Lachawiec, and R. T. Yang, Journal of Physical Chemistry B110, 6236-6244, 2006.
    16. X. P. Gao, Y. Lan, G. L. Pan, F. Wu, J. Q. Qu, D. Y. Song, and P. W. Shen, Electrochemical and Solid-State Letters 4, A173-A175, 2001.
    17. M. H. Yun, Y. H. Mo, K. S. Park, and K. S. Nahm, Internal J Hydro Energy 26, 823-829, 2001.
    18. 黃建良、黃淑娟,化工,第50卷第2期,18-25,2003。
    19. 范守善,材料報導,13期,42,1999。
    20. P. M. Ajayan, and S. Ijima, Nature 361, 333, 1993.
    21. E. Dujardin, T. W. Ebbesen, and H. Hiura, Science 265, 1850, 1994.
    22. A. Bezryadin, C. N. Lau, and M. Tinkhan, Nature 404, 971, 2000.
    23. K. D. Ausman, R. Piner, O. Lourie, and R. S. Ruoff, Journal of Physical Chemistry B104, 8911, 2000.
    24. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, Science 294, 1901, 2001.
    25. I. R. Gould, J. R. Lenhard, A. A. Muenter, S. A. Godleski, and S. Farid, Journal of the American Chemical Society 122, 11934, 2000.
    26. P. E. Cladis, Physical Review Letters 35, 48, 1975.
    27. G. T. Stewart, Mol Crystal 1, 563, 1966.
    28. D. Chapman et al, Biological Membranes, 1968.
    29. S. Chandrasekhar, Liquid Crystal, 8.
    30. 植松,第六回液晶研討會要旨集,特別演講2R01,106,1980。
    31. A. Elliot, and E. J. Ambrose, Discussions of the Faraday Society 9, 246, 1950.
    32. G. H. Brown, and G. W. Shaw, Chemical Review 57, 1049, 1957.
    33. D. Demus, and L. Richter, Text of liquid crystals, Verlag Chemie, 1978.
    34. 日本電子機械工業會,「液晶表示パネル及びその構成材料の測定方法」,規格EIAJ LD-201。
    35. C. W. Oseen, Transactions of the Faraday Society 29, 883, 1933.
    36. H. Zocher, Transactions of the Faraday Society 29, 945, 1933.
    37. F. C. Frank, Discussions of the Faraday Society 25, 19, 1958.
    38. J. S. Hsu, W. J. Chang, C. Y. Hu, and H. C. Li, Japanese Journal of Applied Physics 48, 020220, 2009.
    39. H. Yu, W. Lee, Effects of Carbon Nanotubes on Transient Current of a Nematic Liquid-Crystal Cell in a Polarity-Reversed Electric Field, Annual Meeting of ROC TLCS, 2004.
    40. C. C. Tai, W. Lee, Voltage-Dependent Transmittance and Capacitance of Homotropic Liquid Crystal Doped with Carbon Nanosolids, Annual Meeting of ROC TLCS, 2004.
    41. Y. C. Huang, paper in preparation.

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE