| 研究生: |
李潤奇 Li, Run-Chi |
|---|---|
| 論文名稱: |
濺鍍氧化鎵鋅薄膜應用於雙面透光鈣鈦礦太陽能電池之研究 Studies of sputtered gallium doped zinc oxide thin film for semitransparent perovskite solar cells |
| 指導教授: |
陳昭宇
Chen, Peter Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 濺鍍氧化鎵鋅薄膜 、透明導電氧化物 、鈣鈦礦太陽能電池 、雙面透光太陽能電池 |
| 外文關鍵詞: | Sputtered gallium zinc oxide, Perovskite solar cells, Semitransparent solar cells |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究主要是以濺鍍(Sputtering)方式來成長鎵摻雜氧化鋅薄膜(Gallium doped Zinc Oxide,簡稱GZO)作為透明導電薄膜,而透明導電薄膜需同時具備高的穿透度以及低片電阻值,因此在本實驗中我們在濺鍍的製程中改變工作距離、濺鍍功率及濺鍍的時間,觀察GZO薄膜在穿透度以及其電性上的變化,藉此來優化此透明導電薄膜。優化後的GZO薄膜在可見光波段(約350~800 nm)有高達90%的穿透度,在紅外光波段(約800到1200 nm)能夠有80%以上的穿透度,而薄膜的片電阻約為35Ω/□。
接著我們利用此GZO透明導電薄膜應用於鈣鈦礦太陽能電池上作為透明的對電極,濺鍍的過程中原子轟擊能量太強破壞下方有機電洞傳輸材料Spiro-OMeTAD,因此我們以60和85 mm的工作距離,且調控濺鍍功率將GZO薄膜沉積於Spiro-OMeTAD上,並導入緩衝層三氧化鉬(Molybdenum(VI) oxide,MoO3)來保護Spiro-OMeTAD,使濺鍍GZO完整覆蓋於有機軟物質上。但是由於GZO薄膜在低溫的濺鍍製程下成長出來為多晶的形貌,因此成長於非晶的Spiro-OMeTAD上會造成附著性差而容易剝落,也會使元件的效率較低,因此在本實驗中優化後的雙面透光鈣鈦礦太陽能電池,其最高的光電轉換效率約為9.4%。另外我們也利用較高Tg點、及結晶性較好的高分子材料PTAA作為雙面透光元件之電洞傳輸層,如此可以使元件上之多晶的GZO薄膜結晶性更好,以增加其元件之穩定性。
The halide perovskite solar cells (PSCs) have potential for low-cost and high-efficiency photovoltaics; as a result, they have become promising candidates for the next-generation solar cells. Recently, since the thermal and light stability of PSCs are resolved gradually, the commercialization of PSCs can be expected. In this study, we use sputtering to deposit gallium doped zinc oxide (GZO) as a transparent conductive film, and optimize its transmittance and sheet resistance by adjusting working distance, sputtering power and sputtering time in the process. This GZO film shows high transmittance in the 400–1200 nm wavelength range with a sheet resistance of 35 Ω/sq. We demonstrate GZO-based semitransparent perovskite solar cells with over 9% power conversion efficiency by inserting a thin molybdenum oxide as buffer layer between the sputtered GZO and the organic hole transport layer (HTL) of Spiro-OMeTAD. We further replace Spiro-OMeTAD by PTAA which has a higher Tg point to withstand the bombardment during sputtering.
[1] M. Grätzel, "Photoelectrochemical cells," nature, vol. 414, no. 6861, p. 338, 2001.
[2] A.-E. Becquerel, "Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques," CR Acad. Sci, vol. 9, pp. 145-149, 1839.
[3] C. E. Fritts, "On a new form of selenium cell, and some electrical discoveries made by its use," American Journal of Science, no. 156, pp. 465-472, 1883.
[4] R. S. Ohl, "Light-sensitive electric device," ed: Google Patents, 1946.
[5] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
[6] M. A. Green, "Photovoltaics: coming of age," IEEE Conference on Photovoltaic Specialists, vol. 1, pp. 1-8, 1990.
[7] W. Deng, D. Chen, Z. Xiong, P. J. Verlinden, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, and Y. Yang, "20.8% PERC solar cell on 156 mm× 156 mm P-type multicrystalline silicon substrate," IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 3-9, 2015.
[8] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, and N. Matsubara, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell," IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433-1435, 2014.
[9] B. Vermang, H. Goverde, A. Lorenz, A. Uruena, G. Vereecke, J. Meersschaut, E. Cornagliotti, A. Rothschild, J. John, and J. Poortmans, "Proceedings of the 37th IEEE Photovoltaic Specialists Conference," ed: IEEE New York, 2011.
[10] F. Dimroth, "New world record for solar cell efficiency at 46%," Fraunhofer ISE: Freiburg, Germany, 2014.
[11] F. Solar, "First Solar builds the highest efficiency thin film PV cell on record," ed, 2014.
[12] B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, no. 6346, pp. 737-740, 1991.
[13] H. Ozawa, T. Sugiura, T. Kuroda, K. Nozawa, and H. Arakawa, "Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand," Journal of Materials Chemistry A, vol. 4, no. 5, pp. 1762-1770, 2016.
[14] M. Grätzel, "Dye-sensitized solar cells," Journal of photochemistry and photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145-153, 2003.
[15] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied physics letters, vol. 48, no. 2, pp. 183-185, 1986.
[16] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 80-84, 2011.
[17] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[18] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, and J. H. Noh, "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[19] N. Koide, A. Islam, Y. Chiba, and L. Han, "Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit," Journal of Photochemistry and Photobiology A: chemistry, vol. 182, no. 3, pp. 296-305, 2006.
[20] G. P. Smestad, Optoelectronics of solar cells. SPIE press, 2002.
[21] Q. Xue, R. Xia, C. J. Brabec, and H.-L. Yip, "Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications," Energy & Environmental Science, vol. 11, pp. 1688-1709, 2018.
[22] A. A. Husain, W. Z. W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, vol. 94, pp. 779-791, 2018.
[23] Z. You and G. Hua, "Electrical, optical and microstructural properties of transparent conducting GZO thin films deposited by magnetron sputtering," Journal of Alloys and Compounds, vol. 530, pp. 11-17, 2012.
[24] V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, and R. Martins, "New challenges on gallium-doped zinc oxide films prepared by rf magnetron sputtering," Thin Solid Films, vol. 442, no. 1-2, pp. 102-106, 2003.
[25] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, p. 591, 2012.
[26] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, no. 9, p. 897, 2014.
[27] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, no. 6240, pp. 1234-1237, 2015.
[28] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "Compositional engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, no. 7535, p. 476, 2015.
[29] S. Wenger, "Strategies to Optimizing Dye-Sensitized Solar Cells," EPFL, 2010.
[30] J. Werner, B. Niesen, and C. Ballif, "Perovskite/silicon tandem solar cells: Marriage of convenience or true love story?–An overview," Advanced Materials Interfaces, vol. 5, no. 1, p. 1700731, 2018.
[31] P. Löper, S.-J. Moon, S. M. De Nicolas, B. Niesen, M. Ledinsky, S. Nicolay, J. Bailat, J.-H. Yum, S. De Wolf, and C. Ballif, "Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells," Physical Chemistry Chemical Physics, vol. 17, no. 3, pp. 1619-1629, 2015.
[32] C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, and M. Grätzel, "Semi-transparent perovskite solar cells for tandems with silicon and CIGS," Energy & Environmental Science, vol. 8, no. 3, pp. 956-963, 2015.
[33] C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. J. Bolink, "High efficiency single-junction semitransparent perovskite solar cells," Energy & Environmental Science, vol. 7, no. 9, pp. 2968-2973, 2014.
[34] C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, "An ultrathin, smooth, and low‐loss Al‐doped Ag film and its application as a transparent electrode in organic photovoltaics," Advanced Materials, vol. 26, no. 32, pp. 5696-5701, 2014.
[35] E. Della Gaspera, Y. Peng, Q. Hou, L. Spiccia, U. Bach, J. J. Jasieniak, and Y.-B. Cheng, "Ultra-thin high efficiency semitransparent perovskite solar cells," Nano Energy, vol. 13, pp. 249-257, 2015.
[36] J. Werner, G. Dubuis, A. Walter, P. Löper, S.-J. Moon, S. Nicolay, M. Morales-Masis, S. De Wolf, B. Niesen, and C. Ballif, "Sputtered rear electrode with broadband transparency for perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 141, pp. 407-413, 2015.
[37] T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E. C. Wang, T. C. Kho, K. C. Fong, and M. Stocks, "Rubidium multication perovskite with optimized bandgap for perovskite‐silicon tandem with over 26% efficiency," Advanced Energy Materials, vol. 7, no. 14, p. 1700228, 2017.
[38] T. Leijtens, K. A. Bush, R. Prasanna, and M. D. McGehee, "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, p. 1, 2018.
[39] J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey, W. H. Nguyen, M. D. McGehee, and T. Buonassisi, "A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction," Applied Physics Letters, vol. 106, no. 12, p. 121105, 2015.
[40] K. A. Bush, A. F. Palmstrom, J. Y. Zhengshan, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Hoye, C. D. Bailie, and T. Leijtens, "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, vol. 2, no. 4, p. 17009, 2017.
[41] F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. D. Leon, and D. Sacchetto, "Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency," Nature materials, vol. 17, no. 9, p. 820, 2018.
[42] R. Behrisch and W. Eckstein, Sputtering by particle bombardment: experiments and computer calculations from threshold to MeV energies. Springer Science & Business Media, 2007.
[43] K. Wasa, I. Kanno, and H. Kotera, Handbook of sputter deposition technology: fundamentals and applications for functional thin films, nano-materials and MEMS. William Andrew, 2012.
[44] D. L. Smith, Thin-film deposition: principles and practice. McGraw Hill Professional, 1995.
[45] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
[46] B. E. Warren, X-ray Diffraction. Courier Corporation, 1990.
[47] M. Fox, "Optical properties of solids," 2002.
[48] F. Smits, "Measurement of sheet resistivities with the four‐point probe," Bell System Technical Journal, vol. 37, no. 3, pp. 711-718, 1958.
[49] Z. Chen, T. G. Deutsch, H. N. Dinh, K. Domen, K. Emery, A. J. Forman, N. Gaillard, R. Garland, C. Heske, and T. F. Jaramillo, "Incident photon-to-current efficiency and photocurrent spectroscopy," Photoelectrochemical Water Splitting, pp. 87-97, 2013.
[50] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, no. 9, pp. 4086-4089, 1976.
[51] S. Musić, A. Šarić, and S. Popović, "Dependence of the microstructural properties of ZnO particles on their synthesis," Journal of alloys and compounds, vol. 448, no. 1-2, pp. 277-283, 2008.
[52] S. Sanctis, R. C. Hoffmann, and J. J. Schneider, "Microwave synthesis and field effect transistor performance of stable colloidal indium-zinc-oxide nanoparticles," RSC Advances, vol. 3, no. 43, pp. 20071-20076, 2013.
[53] M. T. Greiner and Z.-H. Lu, "Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces," NPG Asia Materials, vol. 5, no. 7, p. e55, 2013.
[54] A. Intaniwet, C. A. Mills, M. Shkunov, H. Thiem, J. L. Keddie, and P. J. Sellin, "Characterization of thick film poly (triarylamine) semiconductor diodes for direct x-ray detection," Journal of applied Physics, vol. 106, no. 6, p. 064513, 2009.