簡易檢索 / 詳目顯示

研究生: 黃振軒
Huang, Jhen-Syuan
論文名稱: 利用數值與實驗方法發展100-K級極低溫史特靈致冷器
Development of 100-K Class Stirling Cryocooler by Numerical and Experimental Methods
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 138
中文關鍵詞: 極低溫史特靈致冷器理論模式致冷溫度致冷功率
外文關鍵詞: Stirling cryocooler, Theoretical model, Cooling temperature, Cooling capacity
相關次數: 點閱:171下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 史特靈致冷器為一具高經濟與科技價值之極低溫致冷器,本論文目標為發展100 K級極低溫史特靈致冷器,根據其驅動型式史特靈致冷器可分為線性驅動與迴轉式驅動,其中線性驅動之成本較高體積較大,迴轉式致冷器容易與直流無刷馬達整合,本研究針對迴轉式史特靈致冷器進行原型機設計開發。迴轉式史特靈致冷器依據汽缸配置又可分為分置式與整體式,分置式致冷器可減少活塞振動對冷凍性能之影響,而整體式致冷器藉由馬達整合設計可以將整體尺寸微型化。
    本論文建立通用於分置式與整體式史特靈致冷器之理論模型,以熱力模式計算致冷器內部工作流體受機構壓縮膨脹時之質量、壓力與溫度變化,不同於有效度方法本研究將再生熱交換器分隔為多個次體積計算再生器中之溫度分布,致冷頭可達之低溫為史特靈致冷器之研究目標,故理論模型中由致冷頭能量方程式預測其由初始溫度下降至穩態致冷溫度之過程。另外,本研究首先考慮工作氣體在高壓低溫下動黏滯係數與熱傳導係數之變化,以及極低溫對材料比熱與熱傳導係數之影響,本研究除了探討致冷溫度之外,也計算第二定律效率(即真實COP與卡諾COP之比例)。
    本研究分別完成分置式與整體式史特靈致冷器之原型機設計製作,並建立實驗量測系統以測試極低溫致冷器性能。對於分置式結構提出平面彈簧與氣體彈簧之設計,根據實測結果,使用平面彈簧與氣體彈簧之致冷器性能相近,在無負載條件下兩者分別可達100 K與103 K之致冷溫度,而在熱負載測試下第二定律效率分別達到4.5 % 與4.2 %。本研究利用表面型永磁同步馬達完成整體式致冷器,在體積與重量上能符合光學感測器之應用,在35 bar填充壓力、3000 rpm轉速下可獲得88 K無負載致冷溫度,另外在113 K致冷溫度下可達到0.2 W致冷功率與2.8 %第二定律效率。
    本論文完成三型100-K級史特靈致冷器之開發,並測試原型機致冷溫度與致冷功率,由實驗數據驗證所提出理論模型之適用性,另外於文中說明目前技術的不足與未來發展方向。

    Stirling cryocooler has been a critical device in cryogenic applications. This thesis is aimed at development of 100-K class Stirling cryocooler by numerical and experimental methods. Stirling cryocooler can be divided into linear and rotary types according to their drive mechanism. BLDC (Brushless DC) motor can be readily integrated to rotary Stirling cryocooler. This study is focused on the rotary cryocooler with both split and integral configurations that may be developed to various applications.
    A theoretical model is firstly built is this thesis to analyze the Stirling cryocoolers with the two configurations. Variations of mass, pressure and temperature of working gas are evaluated based on the thermodynamic analysis. Cold head temperature is the primary object for Stirling cryocooler. As a result, process of temperature fall of the cold head is prescribed with an energy equation. Effects of pressure and temperature on transport properties are considered in present model. Influence of cryogenic temperature on solid material is introduce as well. The ratio of the actual COP to the Carnot COP is defined to represent the relative performance of Stirling cryocooler.
    On the other hand, prototyping of split and integral Stirling cryocooler is accomplished in this thesis. Experimental system is constructed for measuring the performance of the cryocoolers. For the split configuration, prototypes with planar spring and gas spring are demonstrated with 100 K and 103 K no-load temperature. A surface permanent magnetic synchronous motor is designed to be integrated with integral Stirling cryocooler. No-load temperature of 88 K is achieved at 35-bar charged pressure and 3000-rpm rotation speed. Capacity of 0.2 W is acquired from the proposed integral Stirling cryocooler at a temperature of 113 K.

    摘要 I 第一章 前言 III 第二章 史特靈致冷器之理論模型 IV 第三章 迴轉分置式史特靈致冷器 V 第四章 迴轉整體式史特靈致冷器 VI 第五章 結論 VII ABSTRACT VIII 誌謝 X CONTENTS XI LIST OF TABLES XIV LIST OF FIGURES XV NOMENCLATURE XXII CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Category of Stirling cryocooler 4 1.3 Motivation 7 1.4 Scope of this thesis 10 CHAPTER 2 THEORETICAL MODEL FOR STIRLING CRYOCOOLER 12 2.1 Thermodynamic analysis 12 2.2 Dynamic analysis for split Stirling cryocooler 25 2.3 Properties at low temperature 27 CHAPTER 3 ROTARY-SPLIT STIRLING CRYOCOOLER 30 3.1 Rotary-split Stirling cryocooler with planar spring 30 3.1.1 Design parameters of prototype 31 3.1.2 Apparatus and experimental system 32 3.1.3 Results and discussion 36 3.1.3.1 Baseline case 37 3.1.3.2 Parametric study and experimental validation 41 3.2 Rotary-split Stirling cryocooler with gas spring 45 3.2.1 Design parameters of prototype 45 3.2.2 Results and discussion 46 3.2.2.1 Baseline case 46 3.2.2.2 Parametric study and experimental validation 47 3.2.3 COP and 2nd-law efficiency of rotary-split Stirling cryocooler 49 CHAPTER 4 ROTARY-INTEGRAL STIRLING CRYOCOOLER 51 4.1 Development of rotary-integral Stirling cryocooler 51 4.1.1 Design parameters of prototype 51 4.1.2 Experimental system 53 4.2 Results and discussion 54 CHAPTER 5 CONCLUSIONS 63 REFERENCES 67 PUBLICATION LIST 135

    [1] K. D. Timmerhaus and R. Reed, Cryogenic engineering: fifty years of progress. Springer, New York, 2007.
    [2] R. Radenbaugh, "Refrigeration for superconductors," Proceedings of the IEEE, vol. 92, pp. 1719-1734, 2004.
    [3] A. A. Gage and J. Baust, "Mechanisms of tissue injury in cryosurgery," Cryobiology, vol. 37, pp. 171-186, 1998.
    [4] D. H. Johansen, J. D. Sanchez-Heredia, J. R. Petersen, T. K. Johansen, V. Zhurbenko, and J. H. Ardenkjær-Larsen, "Cryogenic preamplifiers for magnetic resonance imaging," IEEE transactions on biomedical circuits and systems, vol. 12, pp. 202-210, 2017.
    [5] A. Vatani, M. Mehrpooya, and A. Palizdar, "Advanced exergetic analysis of five natural gas liquefaction processes," Energy Conversion and Management, vol. 78, pp. 720-737, 2014.
    [6] R. Radebaugh, "Cryocoolers: the state of the art and recent developments," Journal of Physics: Condensed Matter, vol. 21, no. 164219, 2009.
    [7] X. Breniere, A. Manissadjian, M. Vuillermet, J.-C. Terme, P. Tribolet, J.-M. Cauquil, and J.-Y. Martin, "Reliability optimization for IR detectors with compact cryo-coolers," Proc. SPIE 5783, Infrared Technology and Applications XXXI, Orlando, Florida, United States, 2005.
    [8] S. Riabzev, A. Filis, D. Livni, I. Regev, V. Segal, and D. Gover, "Overview of RICOR tactical cryogenic refrigerators for space missions," Proc. SPIE 9821, Tri-Technology Device Refrigeration (TTDR), Baltimore, Maryland, United States, 2016.
    [9] D. Cabib, M. Lavi, A. Gil, E. Ohel, J. Dolev, and U. Milman, "A Long Wave Infrared (LWIR) spectral imager (7.7 to 12.3 microns) based on cooled detector array and high resolution Circular Variable Filter (CVF)," Proc. SPIE 8896, Electro-Optical and Infrared Systems: Technology and Applications X, Dresden, Germany, 2013.
    [10] M. J. Barrash, A. G. Rudick, and L. B. Ziesel, "Apparatus using stirling cooler system and methods of use," U.S. Patent No. 6,272,867, 2001.
    [11] S. A. Tassou, J. S. Lewis, Y. T. Ge, A. Hadawey, and I. Chaer, "A review of emerging technologies for food refrigeration applications," Applied Thermal Engineering, vol. 30, pp. 263-276, 2010.
    [12] C. H. Cheng, C. Y. Huang, and H. S. Yang, "Development of a 90-K beta type Stirling cooler with rhombic drive mechanism," International Journal of Refrigeration, vol. 98, pp. 388-398, 2019.
    [13] G. Davey, "Stirling cycle machines," U.S. Patent No. 4,397,155, 1983.
    [14] G. Davey and A. Orlowska, "Miniature Stirling cycle cooler," Cryogenics, vol. 27, pp. 148-151, 1987.
    [15] I. Ruehlich, H. Korf, and G. Schellenberger, "Advanced control electronics for Stirling cryocoolers," Proc. SPIE 4820, Infrared Technology and Applications XXVIII, Seattle, WA, United States, 2003.
    [16] K. Liang, M. Dadd, and P. Bailey, "Clearance seal compressors with linear motor drives. Part 1: Background and system analysis," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 227, pp. 242-251, 2013.
    [17] X. Wang, J. Zhu, S. Chen, W. Dai, K. Li, X. Pang, G. Yu, and E. Luo, "Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K," Cryogenics, vol. 80, pp. 193-198, 2016.
    [18] X. Li, W. Dai, W. Zhang, R. Zhou, Q. Xiao, G. Yu, E. Luo, and S. Zhu, "A high-efficiency free-piston Stirling cooler with 350 W cooling capacity at 80 K," Energy Procedia, vol. 158, pp. 4416-4422, 2019.
    [19] S. V. Riabzev, A. M. Veprik, N. Pundak, U. Pratt, and H. Vilenchik, "Gaso-dynamic counterbalancer for pneumatically driven expander in rotary split Stirling cryocooler," Proc. SPIE 5406, Infrared Technology and Applications XXX, Orlando, Florida, United States, 2004.
    [20] I. Vainshtein, S. Baruch, I. Regev, V. Segal, A. Filis, and S. Riabzev, "Overview of RICOR's reliability theoretical analysis, accelerated life demonstration test results and verification by field data," Proc. SPIE 10626, Tri-Technology Device Refrigeration (TTDR) III, Orlando, Florida, United States, 2018.
    [21] A. Filis, N. Pundak, M. Barak, Z. e. Porat, and M. Jaeger, "RICOR's new development of a highly reliable integral rotary cooler: engineering and reliability aspects," Proc. SPIE 8012, Infrared Technology and Applications XXXVII, Orlando, Florida, United States, 2011.
    [22] J. Cauquil, C. Seguineau, J.-Y. Martin, and T. Benschop, "Reliability improvements on Thales RM2 rotary Stirling coolers: analysis and methodology," Proc. SPIE 9821, Tri-Technology Device Refrigeration (TTDR), Baltimore, Maryland, United States, 2016.
    [23] J.-Y. Martin, C. Seguineau, S. Van-Acker, M. Sacau, J. Le Bordays, T. Etchanchu, C. Vasse, C. Abadie, G. Laplagne, and T. Benschop, "RMs1: Qualification results of the rotary miniature Stirling cryocooler at Thales Cryogenics," Proc. SPIE 10180, Tri-Technology Device Refrigeration (TTDR) II, Anaheim, California, United States, 2017.
    [24] G. Walker, "Cycle analysis for Stirling refrigerator with multiple expansion stages, perfect regeneration and isothermal processes," International journal of refrigeration, vol. 13, pp. 13-19, 1990.
    [25] T. Finkelstein, "Generalized thermodynamic analysis of Stirling engines," SAE Technical Paper, no. 600222, 1960.
    [26] I. Urieli and D. M. Berchowitz, Stirling cycle engine analysis. Taylor & Francis, United Kingdom, 1984.
    [27] R. Li and L. Grosu, "Parameter effect analysis for a stirling cryocooler," International Journal of Refrigeration, 2017.
    [28] Ö. E. Ataer and H. Karabulut, "Thermodynamic analysis of the V-type Stirling-cycle refrigerator," International Journal of Refrigeration, vol. 28, pp. 183-189, 2005.
    [29] A. Razani, C. Dodson, and T. Roberts, "A model for exergy analysis and thermodynamic bounds of Stirling refrigerators," Cryogenics, vol. 50, pp. 231-238, 2010.
    [30] S. K. Garg, B. Premachandran, and M. Singh, "Numerical study of the regenerator for a miniature Stirling cryocooler using the local thermal equilibrium (LTE) and the local thermal nonequilibrium (LTNE) models," Thermal Science and Engineering Progress, vol. 11, pp. 150-161, 2019.
    [31] S. W. Van Sciver, Helium cryogenics. Springer Science & Business Media, New York, 2012.
    [32] T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and mass transfer. John Wiley & Sons, New York, 2011.
    [33] P. Bradley, R. Radebaugh, and M. Lewis, "Cryogenic material properties database, update 2006," Thermal Conductivity 29: Thermal Expansion 17: Joint Conferences, Birmingham, Alabama, USA, 2007.
    [34] S. Park, Y. Hong, H. Kim, and K. Lee, "An experimental study on the phase shift between piston and displacer in the Stirling cryocooler," Current Applied Physics, vol. 3, pp. 449-455, 2003.
    [35] M. Singh, M. Sadana, S. Sachdev, and G. Pratap, "Development of miniature Stirling cryocooler technology for Infrared Focal Plane array," Defence Science Journal, vol. 63, pp. 571-580, 2013.
    [36] S. K. Garg, B. Premachandran, M. Singh, S. Sachdev, and M. Sadana, "Effect of porosity of the regenerator on the performance of a miniature Stirling cryocooler," Thermal Science and Engineering Progress, vol. 15, no. 100442, 2020.
    [37] D. Gedeon and J. Wood, "Oscillating-flow regenerator test rig: hardware and theory with derived correlations for screens and felts," NASA Contractor Report, no. 198442, 1996.
    [38] M. Tanaka, I. Yamashita, and F. Chisaka, "Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow," JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties, vol. 33, pp. 283-289, 1990.
    [39] R. A. Ackermann, Cryogenic regenerative heat exchangers. Springer, New York, 1997.
    [40] R. White, "Vuilleumier cycle cryogenic refrigeration," AIR FORCE FLIGHT DYNAMICS LAB WRIGHT-PATTERSON AFB OH, no. AFFDL-TR-76-17, 1976.
    [41] C. H. Cheng and J. S. Huang, "Development of a 100-K pneumatically driven split-type cryogenic Stirling cryocooler based on experimental and numerical study," Cryogenics, vol. 105, no. 102998, 2020.
    [42] C. H. Cheng and J. S. Huang, "Development of a Beta-Type Moderate-Temperature-Differential Stirling Engine Based on Computational and Experimental Methods," Energies, vol. 13, no. 6029, 2020.
    [43] K. Hans-Detlev, "Numerically efficient modelling of non-ideal gases and their transport properties in Stirling cycle simulation," The 17th International Stirling Engine Conference and Exhibition, UK, pp. 572-579, 2016.
    [44] V. D. Arp, R. D. McCarty, and D. G. Friend, "Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa," National Institute of Standards and Technology, no. 1334, 1998.
    [45] E. Marquardt, J. Le, and R. Radebaugh, "Cryogenic material properties database," in Cryocoolers 11: Springer, pp. 681-687, 2002.
    [46] A. A. Kornhauser, "Dynamic Modeling of Gas Springs," Journal of Dynamic Systems, Measurement, and Control, vol. 116, pp. 414-418, 1994.

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE