簡易檢索 / 詳目顯示

研究生: 劉見成
Liu, Chien-Cheng
論文名稱: 氮化鈦/氮化矽複合材料的放電加工及磨耗性質之研究
Investigation of electrical discharge machining and wear properties of TiN/Si3N4 composites
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 195
中文關鍵詞: 放電加工磨耗複合材料
外文關鍵詞: composites., wear, Electrical discharge machining
相關次數: 點閱:42下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文研究於Si3N4基複合材料在氮氣氛中作熱壓燒結,燒結溫度為1850℃,燒結時間1小時,以探討第二相TiN添加對微結構、機械性質、磨耗性能及放電加工的影響,並以有限元素法分析第二相強化物對複合材料之殘留應力與破壞模擬之關係。結果顯示第二相氮化鈦的顆粒大小與含量對氮化矽基複合材料的彎曲強度、破壞韌性、硬度與電阻率有很大影響。晶界相和Si3N4與TiN界面間的化學成分利用高解析電子顯微鏡分析,結果顯示氮化鈦與氮化矽晶粒或氮化矽與氮化矽晶粒間存在一層薄的非晶質膜,而晶界相與三晶粒接點的非晶質相成分相同。有限元素法模擬結果亦證實第二相添加物可以提升基材的破壞韌性,但彎曲強度會降低。

      摩擦與磨耗行為的探討是以Si3N4基複合材料與AISI-52100軸承鋼配對成圓盤與鋼球的乾式往復滑動模式來進行,結果顯示氮化矽基陶瓷複合材料其摩擦與磨耗係數相對較低。而添加氮化鈦的氮化矽基陶瓷複合材料具有較高的破壞韌性值,滑動磨耗結果以氮化矽基複合材料對AISI-52100 鋼各組的摩擦與磨耗係數值皆小於氮化矽對AISI-52100軸承鋼組。當外加荷重為100~300N時,氮化矽陶瓷的摩擦係數值為0.6~0.7之間,磨耗係數值為1.63×10-8 ~ 1.389×10-6 ㎜3/N.m。而添加氮化鈦的氮化矽基陶瓷複合材料的摩擦係數為0.4~0.5之間,磨耗係數值為1.09×10-8 ~ 0.32×10-6 ㎜3/N.m。此結果顯示破壞韌性值對氮化矽基陶瓷複合材料的磨耗行為扮演相當重要的角色。

      滑動磨耗前後的磨耗面和磨屑是利用SEM, EDS, XRD, AFM 及 TEM 等進行分析,而氮化矽基陶瓷複合材料的乾式滑動磨耗機構包括有黏附磨耗(adhesive wear)、磨潤化學反應磨耗(tribo-chemical reaction induced wear)、刮損磨耗(abrasive wear)和三體磨耗(three-bodies wear)。氮化矽基陶瓷複合材料的表面磨耗移除破壞是經由磨粒微犁(micro-plowing)沿著滑動面發生微破壞(micro-fracture)與微犁溝(micro-groove)破壞所致。穿透式電子顯微鏡分析結果在氮化矽與氮化鈦晶粒表面存在有雙晶變形與差排網,此顯示氮化矽基陶瓷複合材料於磨耗破壞過程可提供塑性變形機制。而次表面的破壞發現裂縫沿著晶界延伸繁殖,此結果顯示陶瓷的破壞韌性對破壞機制扮演相當重要的角色。

      從微結構分析顯示導電相氮化鈦添加在氮化矽基材中分佈相當均勻,導電相氮化鈦晶粒相互連接成導電網路,當添加小顆粒氮化鈦含量為40vol%時氮化矽基複合材料的電阻率1.25×10-3Ω.㎝最低,此具高導電性Si3N4基複合材料可以使用放電加工切削。本氮化矽基陶瓷複合材料的放電加工使用線放電加工、雕模放電加工和微放電加工的切削製程。氮化矽基陶瓷複合材料的放電加工移除機構顯示為熔解與蒸發,而再凝固水珠狀痘瘡幾乎為鈦元素凝固,而氮化矽可能被氣化蒸發。氮化矽基陶瓷複合材料在不同放電加工條件下以材料移除率、工具電極磨損和表面粗糙度等評估切削性能。而氮化矽基複合材料的加工移除率與工作電壓、電流、脈衝時間和進給率等有關,較高的移除率加工表面顯示有較大的放電凹痕。經放電加工的陶瓷試片依據ASTM標準作四點彎曲試驗,以十六個加工試片為一組作彎曲測試,結果顯示細放電加工的韋伯模數值10.5較高。而氮化矽基複合材料作雕模放電加工所用銅與黃銅工具電極的磨耗率評估,結果顯示雕模放電氮化矽基複合材料使用黃銅電極的磨耗率皆高於銅電極。

      本研究結果證實,經由添加具導電相TiN的氮化矽基複合材料,當添加大顆粒30vol%TiN時電阻率降為10-1Ω.㎝,此氮化矽基複合材料可使用放電加工切削,經線放電加工製成微小形狀後,其平面寬度為220 μm,平面間距為217μm。另外;經由微放電結果,顯示微孔直徑介於50~70μm之間。

     The Si3N4-based composites were manufactured by hot-pressing sintered at 1850℃ for 1h. The effects of TiN addition to Si3N4-based composites on its microstructure, mechanical properties, wear behaviors and electrical discharge machining were investigated. Residual stress analysis and failure simulation are performed based on finite element method (FEM) to explore the effects of the particle properties on the failure of particle-reinforced composite, using composite samples with various particle properties. The microstructure, strength, fracture toughness and electrical resistivity of Si3N4 containing two different sizes of TiN were investigated. The size and content of TiN particles were found having influence on the strength, toughness, hardness and electrical resistivity of Si3N4-based composites. The grain-boundary film and interface chemistry has been analysed by means of high resolution electron microscopy (HREM). The HREM observation exhibited a thin amorphous intergrangular films at both TiN- Si3N4 and Si3N4-Si3N4 grains boundary. In general, no obvious difference in composition between the grain-boundary film and the triple-grain junctions was detected. The results of the FEM simulation have been demonstrated using by the second phase particles reinforced the composites that displays an enhanced toughness but degraded strength, compared to the monolithic material.

     The friction and wear behavior of Si3N4-based composites against AISI-52100 steel were investigated in the ball -on- disc mode in a non-lubrication reciprocation motion. It has been found that under the conditions used all the ceramic components exhibited rather low friction and wear coefficients. The addition of TiN particles can increase the fracture toughness of Si3N4-based composites. The Si3N4-based composites exhibits a small friction and wear coefficient compared monolithic Si3N4. The contact load was varied from 100 to 300 N. For monolithic silicon nitride materials, high friction coefficients between 0.6 and 0.7 and wear coefficients between 1.63×10-8 and 1.389×10-6 ㎜3/N.m were measured. By adding titanium nitride, the friction coefficients was reduced to a value between 0.4 and 0.5 and wear coefficients between 1.09×10-8 and 0.32×10-6 ㎜3/N.m at room temperature. The fracture toughness of Si3N4-based composites played an important role for wear behavior.

     All materials and worn surfaces as well as wear debris were investigated by means of SEM, EDS, XRD, AFM and TEM before or after the tribological tests. The wear mechanisms of Si3N4-based composites are adhesive wear, tribo-chemical reaction induced wear, abrasive wear and three-bodies wear in non-lubrication sliding tests. Materials removal in the Si3N4-based composites occurs through a combination of micro-fracture and micro-groove deformation from micro-plowing along the sliding traces by the abrasive particles. The presence of twins and dislocation networks in Si3N4-TiN grains indicates that the wear of Si3N4-based composites is well accommodated plastic deformation. The TEM micrographs of wear track revealed plastic deformation through cracking along grain boundary propagation. This shows that the fracture toughness plays an important role in the fracture mechanism.

     The addition of TiN conductive phase is relatively uniformly distributed in silicon nitride matrix. The conductive grains are connected to each other an electric network. A low electrical resistivity of 1.25×10-3Ω.㎝ was obtained in 40vol% small TiN/Si3N4 composites. The Si3N4-based composites have high electrical conductive and can be used for electrical discharge machining (EDM). The EDM of the Si3N4-based composites was conducted using wire-EDM, sinker-EDM and micro-EDM cutting process. The model erosion mechanisms of EDM revealed melting and evaporation, the resolidified droplets almost are Ti element, as Si3N4 should be removed by evaporation.

     Machine ability was evaluated in terms of material removal rates, tool wear, and surface finish under different conditions. The removal rates of Si3N4-based composites were found to be dependent on working voltage, current, pulse duration and feed rate. High removal rate resulted in larger crater which features on the machined surface. Four point flexure testing was performed in accordance with the ASTM standard for the flexure testing of EDMed ceramics. Analysis of sixteen flexure tests indicated a Weibull modulus as high as 10.5 for fine EDM. The erosion rate is evaluated with copper and brass of tool electrode material by sinker-EDM test in Si3N4-based composites. The wear rates of brass are substantially greater than that of copper for all sinker-EDM tests.

     The results demonstrated the possibility of machining structural ceramics by the micro-EDM method through the incorporation of conductive toughening phases. This research has successful shown that EDM can be applied to Si3N4-based composites, if the electrical resistivity is below 10-1Ω.㎝. Electro-conductive ceramic miniaturized structures can be machined by wire-EDM. The vertical walls of Si3N4-base composite machined by wire-EDM, showing the pattern profile which has the minimum line width of 220μm and 217μm space width. Micropores of 800μm in depth and 50~70μm in diameter were successfully machined in Si3N4-based composites by the micro-EDM method.

    總 目 錄 中文摘要 I 英文摘要 IV 總目錄 VIII 圖目錄 XIV 表目錄 XXII 符號說明 XXIV 漢英名詞對照 XXVI 第一章 緒 論 1 1-1前言 1 1-2研究目的與方向 2 第二章 理論基礎 5 2-1 氮化矽之晶體結構 5 2-2 氮化矽基複合材料韌化理論 7 2-2-1裂縫牽制機構 7 2-2-2裂縫轉折機構 8 2-2-3微裂縫韌化機構 17 2-2-4 晶粒大小之影響 17 2-3 有限元素法分析原理 20 2-3-1殘留應力分析 20 2-3-2破壞失效模擬分析 22 2- 4 磨耗理論 23 2-4-1磨耗機制 23 2-4-2脫層機制 25 2-4-3三體磨耗 26 2-5 放電加工原理 27 2-5-1 放電加工方式 28 2-5-2 放電加工機構 30 第三章 實驗方法與步驟 34 3.1原始粉末之規格及製備 34 3-1-1原始粉末規格 34 3-1-2 起始粉末之製備 34 3-2 生胚製備及燒結 37 3-3 燒結體基本性質量測 38 3-3-1密度 38 3-3-2彎曲強度 39 3-3-3硬度及破壞韌性 40 3-3-4相分析 41 3-3-5微結構觀察 41 3-4 滑動磨耗試驗 43 3-4-1摩擦與磨耗係數 43 3-4-2磨耗機制 45 3-5放電加工試驗 50 3-5-1電阻率及表面粗度量測 52 3-5-2線放電加工 52 3-5-3雕模放電加工 55 3-5-4微細孔放電加工 57 第四章 微結構與機械性質 60 4-1 燒結體基本性質及微結構 60 4-1-1密度及相變化 60 4-1-2微結構觀察 63 4-2機械性質測試 69 4-2-1硬度 69 4-2-2彎曲強度 69 4-2-3破壞韌性 73 第五章 有限元素法分析 76 5-1計算及模擬分析 76 5-1-1殘留應力計算 76 5-1-2殘留應力模擬 78 5-1-3破壞失效模擬 80 5-1-4 缺陷影響之模擬 87 5-2破壞韌性模擬分析 89 第六章 磨耗行為 93 6-1參數量測 93 6-1-1 摩擦係數 93 6-1-2 磨耗係數 97 6-2 磨耗面分析 104 6-2-1 掃瞄式電子顯微鏡 104 6-2-2 原子力顯微鏡 112 6-2-3 穿透式電子顯微鏡 116 6-3 磨屑分析 123 6-3-1 掃瞄式電子顯微鏡 123 6-3-2 穿透式電子顯微鏡 127 第七章 放電加工分析 130 7-1線放電加工 130 7-1-1導電性 130 7-1-2加工移除率 135 7-1-3加工後表面型態 140 7-1-4加工後可靠度分析 155 7-2雕模放電加工 158 7-2-1加工移除率 158 7-2-2加工後表面型態 161 7-2-3工具電極磨耗 163 7-3微放電加工 167 7-3-1微孔加工 167 7-3-2元件加工 167 第八章 總 結 論 172 參考文獻 178 誌 謝 191 作者簡歷 192 研究成果 193

    1. M. J. Hoffmann and G. Petzow, “Microstructural Design of Si3N4-based Ceramics,” pp3-15 in silicon nitride ceramics scientific and technological advances, proceeding of materials research society symposium Vol.287(Boston, MA, Dec. 1992), Edited by I. W. Chen, P. F. Becher, M. Mitomo, G. Petzow, and T. S. Yen. Materials Research Society, Pittsburgh, PA, 1993.
    2. M. Taguchi, “Application of High Technology Ceramics in Japanese Automobiles,” Adv. Ceram. Mat., 2[4]752-62(1987).
    (1) R. Dillinger, J. Heinrich, and J. Huber, “Slip-cast Hot Isostatically
    Pressed Silicon Nitride Gas Turbine,” Mater. Sci. Eng.,
    A109.373-78(1988).
    (2) H. Kodama, T. Suzuki, H. Sakamoto, and T. Miyosh, “Toughening of
    Silicon Nitride Matrix Composites by the Addition of Both Silicon Carbide Whiskers and Silicon Carbide Particles,” J. Am. Ceram. Soc., 73[3]678-683(1990).
    (3) D. Baril, S.P. Tremblay, and M. Fiset, “Silicon Carbide
    Platelet-reinforced Silicon Nitride Composites,” J. Mater. Soc., 28. 5486-5494(1993).
    (4) P. F. Becher, C. H. Hsueh, P. Angelini, and T. N. Tiegs, “Toughening
    Behavior in Whisker Reinforced Ceramic Matrix Composites,” J. Am. Ceram. Soc., 71[12]1050-61(1988).
    (5) M. P. Harmer, H. M. Chan, and G. A. Miller, “Unique Opportunities
    for Microstructural Engineering with Duplex and Laminar Ceramic Composites,” J. Am. Ceram. Soc., 75[7]1715-28(1992).
    (6) K. S. Mazdiyasni, and R. Ruh, “High/low Modulus Si3N4 –BN
    Composite for Improved Electrical and Thermal Shock Behavior,” J. Am. Ceram. Soc., 64[7]415-18(1981).
    (7) H. J. Choi, K. S. Cho, and J. G. Lee, “R-curve Behavior of Silicon
    Nitride- Titanium Nitride Composites,” J. Am. Ceram. Soc., 80[10]2681-84(1997).
    (8) R. W. Rice, W. R. Grace, and C. Conn, “Toughening in Ceramic
    Particulate and Whisker Composites,” Ceram. Eng. Sci. Proc., 11[7-8] 667-94(1990).
    (9) Y. Sato, and M. Ueki, “Processing and Mechanical Properties of
    Si3N4 –SiC Whisker-TiN System Composite Materials,” J. Ceram. Soc. Japan., 101[3]354-57(1993).
    (10) G. H. Campbell, M.Ruhle, B. J. Dalgleish, and A. G. Evans,
    “Whisker Toughening : a Comparison between Aluminum Oxide and Silicon Nitride Toughened with Silicon Carbide,” J. Am. Ceram. Soc., 73[3] 521-30(1990).
    (11) M. Poorteman, P. Descamps, F. Cambier, A. Poulet, and J. C.
    Descamps, “Anisotropic Properties in Hot Presses Silicon Nitride-Silicon Carbide Platelet Reinforced Composites,” J. Europ. Ceram. Soc., 19. 2375-79(1999).
    (12) M. Taya, S. Hayashi, A. S. Kobayashi, and H. S. Yoon, “Toughening
    of a Particulate-Reinforced Ceramic-Matrix Composite by Thermal Residual Stress,” J. Am. Ceram. Soc., 73[5] 1382-91(1990).
    (13) H. Mostaghac, and R. Langlois, “Fabrication of Tough Si3N4 –Based
    Composites,” Advance structural inorganic composites., P. Vincenzini (Editor), Elsevier Science Publishers B. V.,573-81(1991).
    (14) S. Y. Lee, “Fabrication of Si3N4 –SiC Composite by
    Reaction-Bonding and Gas-Pressure Sintering,” J. Am. Ceram. Soc., 81[5] 1262-68(1998).
    (15) T. Nagaoka, M. Yasuoka, K. Hirao, and S. Kanzaki, “Effect of TiN
    Particle Size on Mechanical Properties of Si3N4/TiN Particulate Composites,” J. Ceram. Soc. Japan., 100[4]617-20(1992).
    (16) M. Herrmann, B. Balzer, C. Schubert, and W. Hermel, Densification,
    Microstructure and Properties of Si3N4 –Ti(C,N)Composites,” J. Europ. Ceram. Soc., 12. 287-96(1993).
    (17) S. Guicciardi, C. Melandri, V. Medri, and A. Bellosi, “Effect of
    Testing Temperature and Thermal Treatments on Some Mechanical Properties of a Si3N4 –TiN Composite,” Mater. Sci. Eng., A360. 35-45(2003).
    (18) D. J. Magley, R. A. Winholtz, and K. T. Faber, “Residual Stresses in
    a Two-Phase Microcracking Ceramic,” J. Am. Ceram. Soc., 73[6] 1641-44(1990).
    (19) K. T. Faber, and A. G. Evans, “Crack Deflection Processes-I.
    Theory,” Acta. Metall., 31[4] 565-76(1983).
    (20) M. Moriyama, H. Aoki, and K. Kamata, “Mechanical and Electrical
    Properties of Pressureless Sintered TiN-TiB2 System,” J. Ceram. Soc. Japan., 103[8]844-49(1995).
    (21) M. G. Gee, and D. Butterfield, “The Combined Effect of Speed and
    Humidity on the Wear and Friction of Silicon Nitride,” Wear., 162-164. 234-45(1993).
    (22) P. Gautier, and K. Kato, “Wear Mechanisms of Silicon Nitride,
    Partially Stabilized Zirconia and Alumina in Unlubricated Sliding Against Steel,” Wear., 162-164. 305-13(1993).
    (23) K. Adachi, K. Hokkirigawa, K. Kato, “The Wear Mechanism of
    Silicon Nitride in Rolling-Sliding Contact,” Wear., 50. 291-300(1991).
    (24) Z. Chen, J. J. Mecholoky, J. T. Joseph, and C. L. Beatty, “The Fractal
    Geometry of Si3N4 Wear and Fracture Surfaces,” J. Mater. Soc., 32. 6317-23(1997).
    (25) O. Adewoye, and T. F. Page, “Frictional Deformation and Fracture in
    Polycrystalline SiC and Si3N4,” Wear., 70. 37-51(1981).
    (26) J. R. Fleming, and N. P. Suh, “The Relationship Between Crack
    Propagation Rrates and Wear Rates,” Wear., 44. 57-64(1997).
    (27) R. Rosenfield, “A Dislocation Theory Approach to Wear,” Wear., 72.
    97-103(1981).
    (28) D.A. Hills, and D. W. Ashelby, “On the Application of Fracture
    Mechanics to Wear,” Wear., 54. 321-30(1979).
    (29) C. Melandri, M G. Gee, G. D. Portu, and S. Guicciardi, “High
    Temperature Friction and Wear testing of Silicon Nitride Ceramics,” Tribol. Inter., 28[6]403-13(1995).
    (30) M. Woydt, A. Skopp, and K. H. Habig, “Dry Friction and Wear of
    Self-Mated Sliding Couples of SiC-TiN and Si3N4-TiN,” Wear., 148. 377-94(1991).
    (31) C. S. Trueman, and J. Huddleston, “Materail Removal by Spalling
    during EDM of Ceramics,” J. Europ. Ceram. Soc., 20. 1629-35(2000).
    (32) N. L. Mordecai, T. C. Lee, and J. Huddleston, “Developments in
    Spark Erosion of Ceramics,” Brit. Ceram. Trans., 94[1]21-24(1995),
    (33) D. Jianxin, and L. Taichiu, “Surface Integrity in Electro-Discharge
    Machining, Ultrasonic Machining, and Diamond Saw Cutting of Ceramic Composites,” Ceram. Inter., 26. 825-30(2000).
    (34) Y. Akimune, F. Munakata, M. Ando, Y. Okamoto, and N. Hirosaki,
    “Optimization of Mechanical and Electrical Properties of TiN/Si3N4 Material by Agglomerates-Microstructure-Control,” J. Ceram. Soc. Japan., 105[2]122-25(1997).
    (35) Y. Yasutomi, and M. Sobue, “Development of Reaction-Bonded
    Electro-Conductive TiN-Si3N4 and Resistive Al2O3-Si3N4 Composites,” Ceram. Eng. Sci. Proc., 11[7-8]857-67(1990).
    38. E. T. Tuurkdogan, P. M. Bills and V. A. Tiooett, “Silicon Nitride :Some Physico- Chemical Properties,” J. Appl. Chem., 8, 296-302 (1958).
    39. K. Matsuhiro and T. Takajashi, “Physical Properties of Sintered Silicon Nitride Controlled by Grain Boundary Chemical and Microstructure Morphology,” p.11-15, in proceeding of the MRS international meeting on advanced materials, edited by M. Doyama et. al., material research society, Pittsburgh, PA, 1989.
    40. D. Hardie, and K. H. Jack, “Crystal Structure of Silicon of Silicon Nitride ,’ Nature, 180, 332-333(1957).
    41. B. Saruhan, and G. Ziegler, “Processing of Silicon Nitride Matrix Composites with Various Reinforcing Components,” Advanced structural inorganic composites, P. Vincenzini (editor), Elsevier science publishers B. V., pp.563-71(1991).
    42. M. Taya, S. Hayashi, A. S. Kobayashi, and H.S. Yoon, “Toughening of a Particulate Reinforced Ceramic- Matrix Composite by Thermal Residual Stress,” J. Am. Ceram. Soc., 73[5]1382-91(1990).
    43. R. W. Rice, “Toughening in Ceramic Particulate and Whisker Composites,” Ceram. Eng. Sci. PROC., 11[7-8]667-94(1990).
    44. G. C. Wei and P. F. Becher, “Improvements in Mechanical Properties in SiC by the Addition of TiC Particles,” J. Am. Ceram. Soc., 67[8]571-71(1984).
    45. R. A. Culter and A. V. Vikar, “The Effect of Binder Thickness and Residual Stress on the Fracture Toughness of Cemented Carbides,” J. Mater. Sci., 20. 3557-73(1985).
    46. J. D. Eshelby, “The Determination of Elastic Fields of an Ellipsoidal Inclusion and Related Problems,” Proc. R. Soc. London., A241. 376-96(1957).
    47. G. Leroy, J. D. Embury, G. Eduards, and M. F. Ashby, “A Model of Ductile Fracture Based on The Nucleation and Growth of Voids,” Acta. Metall., 29. 1509-22(1981).
    48. D. J. Magley, R. A. Winholtz, and K. T. Faber, “Residual Stress in a Two-Phase Microcracking Ceramic,” J. Am. Ceram. Soc., 73[6]1412-44(1990).
    49. R. W. Davidge and T. J. Green, “Strength of Two-Phase Ceramic/Glass Materials,” J. Mater. Sci., 3[6] 629-34(1986).
    50. A. G. Evans, and K. T. Faber, “Toughening of Ceramics by Circumferential Microcracking,” J. Am. Ceram. Soc., 64[7]394-98(1981).
    51. S. T. Bulijan, J. G. Baldoni, J. Neil, and G. Zilberstein, “Dispersoid Toughened Silicon Nitride Composites,” Report no. ORNL/-Sub/85-22011/1. Oak Ridge National Laboratory, Oak Ridge, TN Sept., 1988.
    52. E. Rabinowicz, “Friction and Wear of Materials,” John Wiley & Sons,
    Inc. 124-239 (1995).
    53. J.F.Archard, “Contact and Rubbing of Flat Surfaces,” J. Appl. Phys., 24[8] 981-988(1953).
    54. N. P. Suh, “The Delamination Theory of Wear,” Wear., 25. 114-124(1973).
    55. K. Kato, “Tribology of Ceramics,” Wear., 136. 117-133(1990).
    56. J. R. Fleming, and N. P. Suh, “Mechanics of Crack Propagation in Delamination Wear,” Wear., 44. 39-56(1973).
    57. N. P. Suh, “An Overview of the Delamination Theory of Wear,” Wear., 44. 1-16(1977).
    58. A. Misra, and I. Finnie,”Correlations Between Two-Body and Three-Body Abrasion and Erosion of Metals,” Wear., 68. 33-39(1981).
    59. J. D. B. Demello, M. D. Charre, “Abrasive Mechanism of White Cast Iron I: Influence of Metallurgical Structure of V-Cr White Cast Irons,” Mater. Sci. Eng., 78. 127-34(1986).
    60. K. Miyoshi, “Fundamental Consideration in Adhesion, Friction and Wear for Ceramic-Metal Contacts,” Wear., 141. 35-44(1990).
    61. B. H. Amstead, P. F. Ostwald, and M. L. Begeman, “Manufacturing Processes,” John Wiley & Sons, Inc., 625-30 (1987).
    62. D. D. Dibitonto, P. T. Eubank, M. R. Patel, M. A. Barrufet, “Theoretical Models of the Electrical Discharge Machining Process. I. a Simple Cathode Erosion Model,” J. Appl. Phys., 66(9) 4095-4111 (1989).
    63. L. Benzerga, C. Lhiaubet, and R. M. Meyer, “Improvement of a Proposed Model for Teat Conduction in an Electrode Submitted to an Electric Discharge: Application to the Indirect Determination of the Anodic and Cathodic Voltage Drops,” J. Appl. Phys., 58(1) 604-06 (1989).
    64. D. F. Dauw, C. A. Brown, and P. Griethuysen, “Surface Topography Investigations by Fractal Analysis of Spark Eroded, Electrically Conductive Ceramics,” Annals of the CIRP., 39. 161-65(1990).
    65. N. F. Petrofes, and A. M. Gadalla, ‘’Electrical Discharge Machining of Advanced Ceramics,” Am. Ceram. Soc. Bull., 7(6)1048-52(1988).
    66. ASTM C373-72.
    67. ASTM E855-81.
    68. A. G. Evans, and E. A. Carles, “Fracture Toughness Determinations
    by Indentation,” J. Am. Ceram. Soc., 59[7-8] 371-72(1976).
    69. D.C. Cranmer, “Friction and Wear Properties of Monolithic
    Silicon-Based Ceramic,” J. Mater. Sci., 20, 2029-37(1985).
    70. Lamon, “Statistical Approaches to Failure for Ceramic Reliability Assessment,” J. Am. Ceram. Soc., 71[2] 106-21(1988).
    71. S. Dutta, “Strength Distribution in Commercial Silicon Carbide Materials,” J. Am. Ceram. Soc., 7[11] C474-79(1988).
    72. V. K. Sarin, “On the α- to-β Transformation in Silicon Nitride, ”
    Mater. Sci. and Engi., A105/106(1988).
    73. D. R. Clarke, “On the Equilibrium Thickness of Intergranular Glass
    in Ceramic Material,” J. Am. Ceramic.Soc., 70[1] 15-22 (1987).
    74. M. K. Cinibulk, G. Thomas, and S. M. Johnson,
    “Grain-Boundary-Phase Crystallization and Strength of Silicon
    Nitride Sintered with a YSiAlON Glass,” J. Am. Ceramic.Soc.,
    73[6] 1606-12 (1990).
    75. M. K. Cinibulk, G. Thomas, and S. M. Johnson, “Strength and Creep
    Behavior of Rare Earth Disilicate Silicon Nitride Ceramic,” J. Am.
    Ceramic.Soc., 75[8] 2050-55 (1992).
    76. A.Bellosi, S.Guicciardi, and A.Tampieri, J. Eur. Ceram. Soc., 9,
    (1992) 83-93.
    77. D. Broek, “Elementary Engineering Fracture Mechanics”, 1986,
    Martinus Nijhoff Publisher.
    78. N. L. Mordecai, T. C. Lee, and J.Huddleston, “Developments in
    Spark Erosion of Ceramics,” Brit. Ceram. Trans., 94[1] 21-24 (1995).
    79. S.T.Buljan, J.G.Baldoni, and M.L.Huckabee, “Si3N4-SiC Composites,” Am. Ceram. Soc. Bull., 66[2] 347-352 (1987).
    80. K. T .Faber and A. G. Evans, “Crack Deflection Processes-I Theory”,
    Acta. Metall., 31[4]564-76(1983).
    81. A. Skopp, M. Woydt, K.H. Habig, “Tribological Behavior of Silicon Nitride Materials Under Unlubricated Sliding Between 22℃ and 1000℃,” Wear., 181-183, 571 (1995).
    82.Y. J. He, A. J. A. Winnubst, D. J. Schipper, P. M. V. Bakker, A. J. Burggraaf, and H. Verweij, “Friction and Wear Behavior of Ceramic-Hardened Steel Couples Under Reciprocating Sliding Motion,” Wear., 184, 33-43 (1995).
    83.T. H. C. Childs, and A. Mimaroglu, “Sliding Friction and Wear up to 600℃ of High Speed Steels and Silicon Nitrides for Gas Tturbine Bearings,” Wear., 162-164, 890-896 (1993).
    84. U. Effner, M. Woydt, “Importance of Machining on Tribology of Lubricated Slip-Rolling Contacts of Si3N4, SiC, Si3N4-TiN and ZrO2,” Wear., 216, 123-130 (1998).
    85. P. Andersson and K. Holmberg, “Limitations on the use of Ceramics in Unlubricated Sliding Applications Due to Transfer Layer Formation,” Wear., 175, 1 (1994).
    86. J. R. Gomes, A. S. Miranda, R. F. Silva, and J. M. Vieira, “Tribological Properties of AlN-CeO2- Si3N4 Cutting Materials in Inlubricated Sliding Against Tool Steel and Cast Iron,” Matwe. Sci. Eng., A209, 277-286 (1996).
    87. L. Fang, Y. Gao, L. Zhou, and P. Li, “Unlubricated Sliding Wear of Ceramics Against Graphitized Cast Irons,” Wear., 171,129-134 (1994).
    88. X. Dong, and S. Jahanmir, “Wear Transition Diagram for Silicon Nitride,” Wear., 165, 169-180 (1993).
    89. K. Adachi, K. Kato, and N. Chen, “The Iinfluence of Niobium, Chromium, Molybdenum and Carbon on the Sliding Wear Behavior of Nickel-Based Hardfacing Alloys,”Wear., 202-204, 291-301(1997).
    90. C.P. Dogan and J.A. Hawk, “Wear of Advanced Ceramics,” Wear., 250, 256-263 (2001).
    91. K. Kato, and K. Adachi, “Wear of Advanced Ceramics,” Wear., 253, 1097-1104 (2002).
    92. T. E. Fischer, and H. Tomizawa, “Interaction of Tribochemistry and Microfracture in the Friction and Wear of Silicon Nitride,” Wear., 105, 29-45 (1985).
    93. J. R. Gomes, A. S. Miranda, J. M. Vieira, and R. F. Silva, “Sliding Speed-Temperature Wear Ttransition Maps for Si3N4/iron Alloys Couples,” Wear., 250, 293-298 (2001).
    94. P. Gauitier, and K. Kato, “Wear Mechanisms of Silicon Nitride, Partially Stabilized Zirconia and Alumina in Unlubricated Sliding Against Steel,” Wear., 162-164. 305-313(1993).
    95. N. P. Suh, “The Delamination Ttheory of Wear,” Wear., 44, 39-56 (1977).
    96. M. Kalin, J. Vizintin, S. Novak, and G. Drazic, “Wear Mechanisms in Oil-Lubricated and Dry Fretting of Silicon Nitride Against Bearing Contacts,” Wear., 210, 27-38(1997).
    97. H. Czichos, S. Becker, and J. Lexow, “International Multilaboratory Sliding Wear Tests with Ceramics and Steel,” Wear., 210, 171-191 (1997).
    98. O. Desa, and S. Bahadur, “Material Removal and Sudsurface Damage Studies in Dry and Lubricated Single-Point Scratch Tests on Alumina and Silicon Nitride,” Wear., 225-229, 1264-1275 (1999).
    99. J. A. Hawk, D. E. Alman, and J. J. Petrovic, “Abrasive Wear of Si3N4-MoSi2 Composites,” Wear., 203-204. 247-256(1997).
    100. J. Vizintin M. Kalin, S. Novak, G. Drazic, L. K. Ives, and M. B. Peterson, “Effect of Slip Amplitude on the Fretting Wear of Silicon Nitride Against Silicon Nitride,” Wear., 192, 11-20 (1997).
    101. M. A. Meyers, and K. K. Chawla, “Mechanical Metallurgy Principles and Applications,” Ed. By B. Kurtz, T. Soler, N. Krivanek, and E. Enterprises, Prentice-Hall, Inc. 284-288 (1984).
    102. J. D. Verhoeven, “Fundamentals of Physical Metallurgy,” John Wiley & Sons, Inc., 459-464 (1975).
    103. Y. Wang, S. M. Hsu, “Wear and Wear Transition Mechanisms of Ceramics,” Wear., 195, 112-122 (1996).
    104. T. E. Fischer, M. P. Anderson, and S. Jahanmir, “Influence of Fracture Toughness on the Wear Resistance of Yttria-Doped Zirconium Oxide,” J. Am. Ceram. Soc., 72[2]252-57(1989).
    105. W. M. Rainforth, “The Sliding Wear of Ceramics,” Ceram. Inter., 22, 356-372 (1996).
    106. Y. Enomoto, and K. Mizuhara, “Characterization of Wear Behavior of Steel and Ceramics in the VAMAS Round Robin Tests,” Wear., 162-164, 119-125 (1993).
    107. J. R. Gomes, A. S. Miranda, R. F. Silva, and J.M. Vieira, “Tribooxidational Effect on Friction and Wear Behavior of Silicon Nitride/Tool Steel and Silicon Nitride/Gray Cast Iron Contacts,” J. Am. Ceram. Soc., 82[4] 953 (1999).

    108. M. Ramulu, “EDM Sinker Cutting of a Ceramic Particulate Composite, SiC-TiB2” Adv. Ceram. Mater., 3[4] 324-327 (1988).
    109. A. I. Kondrashev, and V. Ya. Petrovskii, “Preparation of Materials in the System Al2O3 (with Additions)- TiB2 and Study of Their Electrical Resistance,” Powd. Metall. Met. Ceram., 35[11-12] 597-523 (1996).
    110. L. C. Lee, L. C. Lim, Y. S. Wong, and H. H. Lu, ”Towards a Better Understanding of the Surface Features of Electro-Discharge Machined Tool Steels,” J. Mater. Proce. Tech., 24, 513-523 (1990).
    111. D. S. Mclachlan, M. Blaszkiewicz, and R. E. Newnham, “Electrical Resistivity of Composites,” J. Am. Ceram. Soc., 73[8] 2187-2203 (1990).
    112. K. Takahashi and R. Jimbou, “Effect of Uniformity on the Electrical Resistivity of SiC-ZrB2 Ceramic Composites,” J. Am. Ceram. Soc., 70[12] c369-c373 (1987).
    113. G. N. Levy, “EDM-Machining of Sintered Carbide Compacting Dies,” Annals of the CIR., 37[1] 175-178(1988).
    114. S. L. Casto, E. L. Valvo, M. Piacentini, “Cutting Temperature Evaluation in Ceramic Tools: Experimental Tests, Numerical Analysis and SEM Observations,” Annals of the CIR., 43[1] 73-76 (1994).
    115. H. Tokura, I. Kondoh, and M. Yoshikswa, “Ceramic Material Processing by Electrical Discharge in Electrolyte,” J. Mater. Sci., 24, 991-998 (1989).
    116. C. Martin, B. Cales, P. Vivier, and P. Mathieu, “Electrical Discharge Machinable Ceramic Composites,” Mater. Sci. Eng., A109, 351-356 (1989).
    117. T. M. Yue, and Y. Dai, “Wire Electrical Discharge Machining of Al2O3 Particle and Short Fibre Reinforced Aluminium Based Composites,” Mater Sci and Tech., 12, 831-835 (1996).
    118. P. C. Pandey, S. T. Jilani, “Electrical Machining Characteristics of Cemented Carbides,” Wear., 116, (1987) 77-88.
    119. Y. T.Sunekawa, M. Oasahiro, and N. Mohri, “Surface Modification of Aluminum by Electrical Discharge Alloying,” Mater. Sci. Eng., A174, 193-198 (1994).
    120. S. T. Jilani, and P. C. Pandey, “An Analysis of Surface Erosion in Electrical Discharge Machining,” Wear., 84, 275-284 (1983).
    121. P.F.Thomson, Surface Damage in Electro-Discharge Machining, Mater Sci and Tech., 5, 1153-1157 (1989).
    122.N. Mohri, H. Yamada, K. Furutani, T. Narikiyo, and T. Magara, “System Identification of Wire Electrical Discharge Machining,” Annals of the CIR., 47[1] 173-176 (1998).
    123. T. Masuzawa, and K. Tanaka, “Water Based Dielectric Solution for EDM,” Annals of the CIR., 32[1] 119-122 (1983).
    124.M. L. Jeswani, “Roughness and Wear Characteristics of Spark-Erosed Surfaces,” Wear., 51, 227-236 (1978).
    125. L. C. Lee, L. C. Lim, Y. S. Wong, H. H. Lu, “Towards a Better Understanding of the Surface Features of Electro-Discharge Machined Tool Steels,” J. Mater. Proce. Tech., 24, 513-523 (1990).
    126. R. Bormann, “Getting Those Better EDM’d Surface,” Modern machine shop., 2, 57-66 (1991).
    127. A. G. Mamalis, G. C. Vosniakos, N. M. Vaxevanidis, “Macroscopic and Microscopic Phenomena of Electro-Discharge Machined Steel Surfaces: an Experimental Investigation,” J. Mech. Work. Tech., 15, 335-356 (1987).
    128. T. Lee, and J. Deng, “Mechanical Surface Treatments of Electro-Discharge Machined (EDMed) Ceramic Composite for Improved Strength and Reliability,” J. Europ. Ceram. Soc., 22, 545-550 (2002).
    129. M. Ramulu, “EDM Sinker Cutting of a Ceramic Particle Composite, SiC-TiB2,” Adv. Ceram. Mater., 3 [4] 324-327 (1988).
    130. N. L. Mordecai, and J. Huddleston, “Spark Erosion of an Electroconductive SiC Ceramic Matrix Composite Containing TiB2,” Brit. Ceram. Trans., 94[4] 161-164 (1995).
    131. W. A. Groen, and P. F. Vanhal, “High Temperature Electrical Conductivity of AlN Ceramics,” Brit. Ceram. Trans., 93[5] 194-195 (1994).
    132. N. Mohri, N. Saito, and Y.Tsunekawa, “Metal Surface Modification by Electrical Discharge Machining with Composite Electrode,” Annals of the CIR., 42, 219-222 (1993).
    133. M. Ramulu, M. Taya, “EDM Machinability of SiCw/Al Composites,” J. Mater. Sci., 24, 1103-1108 (1989).
    134. S. Norasetthekul, P. T. Eubank, W. L. Bradley, and B. Bozkurt, “Use of Zirconium Diboride-Copper as an Electrode in Plasma Applications,” J. Mater. Sci., 34, 1261-1270 (1999).
    135.R. Snoeys, F. Staelens, and W. Dekeyser, “Current Trends in Non-Conventional Material Processes,” Annals of the CIR., 35[2] 467-480 (1986).
    136.D. M. Allen, and A. Lecheheb, “Micro Electro-Discharge Machining of Ink Jjet Nozzles: Optimum Selection of Material and Machining Parameters,” J. Mater. Process. Tech., 58, 53-66 (1996).
    137. I. Beltrami, A. Bertholds, and D. Dauw, “A Simplified Post Process for Wire Cut EDM,” J. Mater. Proces. Tech., 58, 358-389 (1996).
    138. G. N. Levy, and F. Maggi, “WED Machinability Comparison of Different Steel Grades,” Annals of the CIR., 39[1] 183-185 (1990).
    139. T. Masuzawa, J. Tsukamoto and M. Fujino, “Drilling of Deep Microholes by EDM,” Annals of the CIR., 38[1] 195-198 (1989).
    140. T. Masuzawa, M. Fujino, and K. Kobayashi, “Wire Electro-Discharge Grinding for Micro-Machining,” Annals of the CIR., 34[1] 431-434 (1985).

    下載圖示 校內:2006-08-26公開
    校外:2006-08-26公開
    QR CODE