簡易檢索 / 詳目顯示

研究生: 林奇勳
Lin, Chi-Hsun
論文名稱: 常壓化學氣相沉積製程混合器之混合與熱傳研究
Study of Mixing and Heat Transfer of a Mixer in the APCVD Process
指導教授: 王振源
Wang, Chen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 層流加熱混合器自然對流
外文關鍵詞: laminar flow, free convection, heatingl, mixer
相關次數: 點閱:99下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數值方法模擬大型氣相沉積混合器的混合情形,探討其幾何設計與加熱位置對其流場的影響。模擬不同混合器長度下,觀察在混合腔中之流場、溫度場與濃度場變化。混合器高度增加流體在混合器中時間增長,明顯隨高度而增加,且出口溫度亦得到更佳之均勻程度,而熱點分布皆在混合器頂層。改變稀釋流入口高度,發現提高之入口時,其結果顯示熱點依然在混合器之頂層,但其出口混合效果與熱均勻度為最佳。改變加熱位置之模擬,考慮僅加熱熱對流較為強勢之半圓弧壁面以及加熱下半圓弧側壁與前述結果比較,發現下半圓弧側壁加熱為其熱點溫度最低。顯示加熱位置於熱對流強勢處,對於降低熱點溫度有明顯效果。

    This work is a simulation study for the fluid mixing process in a large CVD mixer by using numerical methods, in which we investigated the influences that the geometrical design of a mixer and its heating wall position have on the flow field. As increased the mixer length, a longer fluid staying time was observed, resulting in a greater mixing efficiency and a better uniformity in the temperature profile of the outlet. We considered changing the heating position, found the lower sidewall, it is showed that heating the lo

    中文摘要 i 英文摘要 ii 致謝 iv 表目錄 viii 圖目錄 ix 符號 xiii 1 導論 1 1.1 簡介 1 1.2 文獻回顧 2 1.3 本文概述 6 2 數學與物理模式 7 2.1 基本假設 7 2.2 統御方程式 8 2.3 混合強度 9 2.4 溫度標準差 9 2.5 初始條件與邊界條件 10 3 數值方法 12 3.1 數值演算法 12 3.2 收斂標準 13 3.3 三維加熱管流測試 13 3.4 格點測試 14 3.5 暫態分析 15 4 結果與討論 16 4.1 紊流模擬 16 4.2 多入口模擬 17 4.3 自然對流的影響 18 4.4 混合腔高度的影響 18 4.5 入口位置的影響 21 4.5.1 稀釋端入口位置 21 4.5.2 MBTC端入口位置 23 4.6 加熱位置 25 4.7 出口位置與長度 27 5 結論與未來工作 29 5.1 結論 29 5.2 未來工作 30 參考文獻 31

    [1] K. Y. Cheong, N. Muti and S. R. Ramanan, “Electrical and optical studies of ZnO : Ga thin films fabricated via the sol-gel technique,” Thin Solid Films, Vol. 410, pp. 142-146, 2002.
    [2] T. Mochida, K. Kikuchi, T. Kondo, H. Ueno and Y. Matsuura, “Highly sensitive and selective H2S gas sensor from rf sputtered SnO2 thin film,” Sensor and Actuators B, Vol. 25, pp. 433-437, 1995.
    [3] H. L. Ma, D. H. Zhan, P. Ma, S. Z. Win and S. Y. Li, “Preparation and properties of transparent conducting indium tin oxide films deposited by reactive evaporation,” Thin Solid Films, Vol. 263, pp. 105-110, 1995.
    [4] J. Dutta, P. Roubeau, T. Emeraud, J.M. Laurent, A. Smith, F. Leblanc and J. Perrin, “Application of Pyrosol Deposition Process for Large-area Deposition of fluorine-doped tin dioxide thin films,” Thin Solid Films, Vol. 239, pp. 150-155, 1994.
    [5] J. L. Buchanan and C. McKown, “Off-line Sheet Glass Coating System,” Journal of Non-Crystalline Solid, Vol. 218, pp. 179-184, 1997.
    [6] A.M.B. Van Mol, Y. Chae, A.H. McDaniel and M. D. Allendorf, “Chemical Vapor Deposition of Tin Oxide: Fundamentals and Application,” Thin Solid Films, Vol. 502, pp. 72-78, 2006.
    [7] R. J. McCurdy, “Successful Implementation Methods of Atmospheric CVD on A Glass Manufacturing Line,” Thin Solid Films, Vol. 351, pp. 66-72, 1999.
    [8] S. M. Hosseinalipour and A. S. Mujumdar, “Flow and Thermal Characteristics of Steady Two Dimensional Confined Laminar Opposing Jet,” Int. Comm. Heat Mass Transfer, Vol. 24, No. 1, pp. 27-38, 1997.
    [9] S. Devahastin, and A. S. Mujumdar, “A Numerical Study of
    Flow and Mixing Characteristics of Laminar Confined Impinging Streams,” Chemical Engineering Journal, Vol. 85, pp. 215-223, 2002.
    [10] S. J. Wang, S. Devahastin and A. S. Mujumdar, “Effect of Temperature Difference on Flow and Mixing Characteristics of Laminar Confined Opposing Jet,” Applied Thermal Engineering, Vol. 26, pp. 519-529, 2005.
    [11] I. Dagtekin, H. F. Oztop, “Heat Transfer due to Double Laminar Slot Jets Impingement onto An isothermal Wall within one Side Closed Long Duct,” Int. Comm. Heat Mass Transfer, Vol. 35, pp. 65-75, 2008.
    [12] 陳俊元, 等截面積不同衝擊角度之單對衝流場三維數值模擬與分析, 國立中興大學機械工程所碩士論文, 2009.
    [13] S. M. Lee, D. L. Kim, H. J. Youn and K. S. Hong, “Tin Oxide Films by Chemical Vapor Deposition Using a Monobutyltin Trichlride Source: The Effect of H2O on Deposition Behavior and Electrical properties,” Japanese Journal of Applied Physics, Vol. 39, pp. 407- 412, 1997.
    [14] Y. Chae, W. G. Houf, A. H. McDaniel, J. Troup, M. D. Allendorf, “Stagnation Flow Reactor Investigation of Tin Oxide CVD from Monobutyltin Trichloride,” Journal of The Electrochemical Society, Vol. 151, pp. C527-C534, 2004.
    [15] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., 1980.
    [16] F. P. Incropera and D. P. DeWitt Fundamentals of Heat and Mass Transfer, 5th edition, John Wiley and Sons, Hoboken, NJ, 2002.
    [17] A. Barletta and S. Lazzari, “Combined forced and free flow in a vertical circular duct subjected to non-axisymmetric wall heating conditions,” Int. Journal of Heat and Mass Transfer, Vol. 50, pp. 4927-4936, 2007.
    [18] D. K. Choi and D. H. Choi, “Developing mixed convection flow
    in a horizontal tube under circumferentially non-uniform heating,”
    Int. Journal of Heat and Mass Transfer, Vol. 37, pp. 1899-1913, 1994.
    [19] Fluent 6.3 User’s Guide, 2006.
    [20] H. Telib, M. Manhart, A. Iollo, “Analisis and Low-order Modeling
    of The Inhomogeneous Transitional Flow Inside A T-mixer,” Phys.
    of Fluids,Vol. 16, No. 8, August 2004.
    [21] 劉孟修, 兩種液體在側壁注入型微混合器之混合效率研究, 國立成功大學航太工程所碩士論文, 2009.

    下載圖示 校內:2013-08-05公開
    校外:2013-08-05公開
    QR CODE