簡易檢索 / 詳目顯示

研究生: 巫俊昌
Wu, Chun-Chang
論文名稱: 利用溶膠-凝膠法製備聚苯噁唑/二氧化鈦奈米複合材料之研究
Preparation and Properties of Polybenzoxazole/TiO2 Hybride Nanocomposites via Sol-Gel process
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 88
中文關鍵詞: 溶膠-凝膠法聚苯噁唑複合材料二氧化鈦
外文關鍵詞: sol-gel, PBO, compositew, TiO2
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用溶膠-凝膠法製備聚苯噁唑/二氧化鈦(PBO/TiO2)奈米複合材料。利用BisAPAF和IC兩種單體在低溫(5℃)聚合成PHA前驅物,可得PHA本質黏度值為0.31 dL/g。接著將Ti(OC2H5)混摻於PHA前驅物之中,製成TiO2/PHA薄膜。最後將TiO2/PHA薄膜經由多段升溫條件之下,於350℃脫水環化之後形成TiO2/PBO薄膜。將薄膜進行各項分析研究,經由TEM圖中可看出TiO2均勻分散於PBO基材中,且隨著TiO2量的增加,顆粒大小也跟著增加,但大小都小於50nm且分散性良好,此結果與SEM分析相符合。玻璃轉移溫度(Tg)會隨著TiO2量的增加而有一線性的增加,當TiO2增加到達9.53wt %時其Tg為305℃,較純PBO提高了約25℃,添加TiO2時可提升薄膜的玻璃轉移溫度,但是添加TiO2時會降低薄膜的熱裂解溫度。經由橢圓偏光儀可得知折射率(n)會隨著TiO2量的增加而有一線性的增加,當TiO2增加到達9.53wt %時在入射波長633nm其折射率為1.72,添加TiO2時可提升薄膜的折射率,不管TiO2的添加量為何,消光係數(k)在波長400-900nm的範圍都近乎為零,表示PBO/TiO2薄膜在可見光的範園有很好的光學穿透性,此結果與Uv-Visible光譜分析結果相符。從TiO2實際含量的分析可知理想值跟實際量很接近,證明溶膠-凝膠反應進行相當良好,產率非常的高。

      A polybenzoxazole(PBO)/ TiO2 nanocomposite has been prepared by sol-gel process. The PBO precursor , polyhydroxyamide (PHA), was prepared by a low temperature polycondensation reaction between isophthaloyl chloride(IC) and 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF) with an inherent viscosity of 0.31 dL/g, and then Ti(OC2H5) was added to PHA solution. A TiO2/PBO film was obtained by casting from TiO2/PHA and cured at 350℃. Transmission electron microscope (TEM) analyses showed that the TiO2 was dispersed in PBO matrix in a nanosacle. The result is consistent with the observation from scanning electron microscope (SEM). The size of the TiO2 increased with the increasing TiO2 content. The glass transition temperature (Tg) of PBO/ TiO2 film increased linearly with increasing amounts of TiO2. The glass transition temperature(Tg) of the PBO/ TiO2 film containing 9.53 wt % TiO2 increased 25oC compared to the pure PBO film. The refractive index (n) of PBO/ TiO2 film increased linearly with increasing amounts of TiO2. The refractive index (n) of the PBO/ TiO2 film containing 9.53 wt % TiO2 increased 0.05 compared to the pure PBO film. Excellent optical transparence was obtained in the visible light region for the PBO/ TiO2 thin films.

    目錄 摘要............................Ⅰ Abstract ........................Ⅲ 誌謝.............................Ⅳ 目錄............................. Ⅴ 表目錄............................Ⅹ 圖目錄.............................XI 第一章 緒論........................................1 1-1 前言...................................1 1-2 研究動機..........................2 第二章 文獻回顧及原理.................4 2-1 聚苯噁唑(Polybenzoxazole,PBO)的發展與應用........4 2-2 有機-無機奈米高分子複合材料..........................7 2-2-1 有機-無機奈米高分子複合材料之介紹.........................7 2-2-2 有機-無機奈米高分子複合材料之特性..................9 2-2-3 有機-無機奈米高分子複合材料之應用................10 2-2-4 有機-無機奈米高分子複合材料之製備方法..............13 2-3 溶膠-凝膠法( Sol-Gel method)..................................15 2-3-1 溶膠-凝膠法( Sol-Gel method)簡介....................15 2-3-2 溶膠凝膠法的優點與型式..........................18 2-3-3 溶膠凝膠法的製備方法....................................19 2-4 平面波導管..........................19 2-4-1 平面波導管之介紹.......................19 2-4-2 平面波導管與有機/無機混成奈米材料..............................22 2-4-3 平面光波導成型製程...................24 第三章 實驗方法與步驟.............................30 3-1 實驗用藥品與儀器........ ................30 3-1-1 藥品.....................................30 3-1-2 實驗儀器..............................31 3-2 實驗步驟.......................................32 3-2-1 有機-無機奈米複合高分子前驅物之合成.................32 3-2-2 PBO/TiO2奈米複合材料薄膜之製備..................33 3-3 性質測試與分析...................34 3-3-1 固有黏度 (Inherent viscosity) 之測定..................34 3-3-2 紅外線光譜儀 (FTIR) 分析..........................34 3-3-3 核磁共振光譜 (1H-NMR) 分析..............................35 3-3-4 元素分析儀.........................35 3-3-5 X-ray繞射 (XRD) 分析.................36 3-3-6 能量分散光譜儀分析...................36 3-3-7 穿透式電子顯微鏡(TEM)觀察...........36 3-3-8 熱重損失分析(TGA)...............37 3-3-9 微差掃描熱 (DSC) 分析.................37 3-3-10 橢圓偏光儀(ellipsometry).......................38 3-3-11 紫外-可見光分析................38 3-3-12 溶解度測試...........................38 第四章 結果與討論 .................42 4-1 聚苯噁唑( PBO )的合成與性質鑑定.................42 4-1-1 聚苯噁唑(PBO)及前驅物-聚羥醯胺(PHA)之合成.................43 4-1-2 前驅物聚羥醯胺(PHA) 之鑑定.................43 (a) 固有黏度測定(Inherent viscosity).................43 (b) 傅立葉紅外線光譜( FT-IR )之鑑定.................43 (c) 核磁共振光譜( 1H-NMR )之鑑定.................44 4-1-3 聚苯噁唑 (PBO) 之鑑定.................44 (a) 元素分析.................44 (b) 傅立葉紅外線光譜( FT-IR )之分析.................44 4-2 PBO/TiO2奈米複合材料之析.................45 4-2-1 PBO/TiO2奈米複合材料之合成.................45 4-2-2 TiO2實際含量的分析.................47 4-2-3 PBO/TiO2奈米複合材料之鑑定.................47 (a) 傅立葉紅外線光譜( FT-IR )之分析.................47 (b) TiO2的能量分散光譜分析.................48 (c) X-ray繞射分析.................48 4-3 分散程度分析........ .............48 4-3-1 穿透式電子顯微鏡分析.................48 4-3-2 掃描式電子顯微鏡分析.................49 4-4 熱性質分析........ ..................49 4-4-1 玻璃轉移溫度之分析......................49 4-4-2 熱重損失分析...........................50 4-5 光學性質分析........ .................51 4-5-1 可見度分析........................51 4-5-1 橢圓偏光儀之分析.....................52 (a) 折射率(n)之分析...................52 (b) 消光係數(k)之分析.................52 (c) 阿貝數(abbe number)之分析.............53 4-6 溶解度量測......................53 4-7 薄膜光學穿透性觀察…................54 第五章 結論.................................82 參考文獻..........................84 自述.....................................88

    1. 吳耀東,光纖原理與應用,全華科技圖書公司
    2. J. W. McPherson; C. F. J. Dunn, Vac. Sci. Technol. 1987, 5,1321.
    3. F. G. Yost, Scripta Mat., 1989, 23, 1323.
    4. C. D. Dang; P. T. Mather,; M. D. JR. Alexander; C.J. Grayson; M. D. Houtz; R. J. Spry; F. E. Arnold, Journal of Polymer Science:Part A: Polymer Chemistry, 2001, 38, 1991.
    5. W. D. Joseph; J. C. Abed; R. Mercier; J. E. McGrath, Polymer, 1994, 35, 5046.
    6. O. Haba; M. Okazaki; T. Nakayama; M. J. Ueda, Photopolym. Sci.Technol., 1997, 10, 55.
    7. A. Seino; O. Mochizuki; O. Haba; M. J. Ueda, Polym. Sci., 1998, 36, 2261.
    8. W. D. Joseph; R. Mercier; A. Prasad; H. Marand; J. E. McGrath, Polymer, 1993, 24, 685.
    9. A. Tokoh, Photosensitive Polymers, 1999, Vol.12, 89.
    10. 蔡中燕,化工資訊, 1998, p.28
    11. 吳仁傑,工業材料, 第125期 1997, p.115
    12. Sasaki,Noriaki,Komarneni,Sridhar,Roy,Rustum, American Ceramic Society Bulletin, Vol.61, NO.6, 1982.6 p.649
    13. 蔡中燕,化工資訊, 1998, p.28
    14. 陳文章, 化工, 第46卷第5期,1999,p.56
    15. D.M. Delozier, R.A. Orwoll, J.F. Cahoon, Polymer, Vol.43, 2002, p.813
    16. Z. M. Liang, J. Yin, H. J. Xu, Polymer, Vol.44, 2003, p.1391
    17. J. H. Chang, M. P. Kwang, D. Cho, Polymer Engineering and Science, Vol.41, No.9, 2001, p.1514
    18. J. H. Chang, M. P. Kwang, Polymer Engineering and Science, Vol.41, No.12, 2001, p.2226
    19. S. H. Hsiao, G. S. Liou ,L. M. Chang, Journal of Applied Polymer Science, Vol.80, 7 2001, p.206
    20. S. H. Hsiao, G. S. Liou ,L. M. Chang, Journal of Applied Polymer Science, Vol.80, 7 2001, p.206
    21. A. Usuki, M. Kawasumi, Y. Kojima, Journal of Materials Research, Vol.7, 1991, p.856
    22. P. B. Messersmith, E. P. Giannelis, Journal of Polymer Science Part A: polymer Chemistry, Vol.33, 1995, p.1047
    23. P. B. Messersmith, E. P. Giannelis, Journal of Polymer Science Part A: polymer Chemistry, Vol.33, 1995, p.1047
    24. S. D. Burnside, E. P.Giannelis, Chemistry of Materials, Vol.7, No.9, 1995, p.1597
    25. 樂文禮,“聚醯亞胺奈米矽氧複合材料選擇性封裝之研究”,國立成功大學化學工程研究所碩士論文, 2002
    26. A. B. Morgan ,J. W. Gilman ,C. L. Jackson, Macromolecules, Vol.34, 2001, p.2735
    27. H. L. Tyan, K. H. Wei, T. E. Hsieh, Journal of Polymer Science Part B: Polymer Physics, Vol.38, 2000, p.2873
    28. A. Gu, F. C. Chang, Journal of Applied Polymer Science, Vol.79, 2001, p.289
    29. T. Agag, T. Koga, T. Takeichi, Polymer, Vol.42, 2001, p.3399
    30. K. A. Carrado, L. Xu, Chemistry of Materials, Vol.10, 1998, p.1440
    31. 郭文法,工業材料,125期, 1997, p.129
    32. 蔡中燕,工業材料,125期, 1997, p.120
    33. R. Yokota, R. Horiuchi., Kochi, M., H. Soma, I. Mita, Journal of Polymer Scence:Polymer Leter., Vol.26, No.215. 1988
    34. E. P. Giannelis, Advanced Mateialr , 1996 p. 29
    35. H. M. Ebelmen, Ann Chimie. Phys., 1846, 16, 129
    36. F. Feher , H. J. Berthold, Z. Anorg. Allg. Chem., 1953, 273, 144
    37. H. Dislich., Glastechn. Ber., 1971, 44, 1.
    38. C.Jeffrey Brinker., W. George Scherer Sol-Gel-Science Chap 3
    39. C. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 72(1950)5705
    40. 陳暉,陳姿秀,化工技術,第8卷第5期, 2000.5 p.166
    41. Y. Wei, J. M. Yeh, D. Jin, Chem. Mater. 1995, 7, 969
    42. 化工資訊 ,1998, 2, 32
    43. 田珮,張光偉,塑膠資訊,2003.8
    44. 施希弦, 化工資訊, 2001.6
    45. 金進興, 工業材料, 2002.7
    46. 金進興, 工業材料, 2001.7
    47. 張光偉, 化工資訊, 2002.8
    48. 陳鴻仁, 光連雙月刊, 2002,38
    49. A. Morikawa ; Y. Iyoku ; M. Kakimoto ; Y. Imai, Journal of Materials Chemistry, 1992,Vol.2, pp.679
    50. P. C. Chiang, W. T. Whang, Polymer, 2003,44:2251
    51. Q. Hu, E. Marand Polymer 1999;40:4833
    52. J. Zhang, B.J. Wang, X. Ju, T. Liu, Hu TD. Polymer 2001;42:3697
    53. R. K. Boggess, L. T. Taylor, J Polym Sci, Polym Chem Ed 1987;25:685.
    54. T. Sawada, S. Ando, Chem Mater 1998;10:3368
    55. J. D. Rancourt, L. T. Taylor, Macromolecules 1987;20:790.
    56. M. Yoshida, M. Lal, N. D. Kumar, P. N. Prasad. J Mater Sci 1997;32:4047.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE