簡易檢索 / 詳目顯示

研究生: 吳翊婷
Wu, Yi-Ting
論文名稱: 自然對流柱狀鰭片最佳尺寸及傾斜角設計之研究
An Optimum Design of Natural Convection Pin Fin Array with Orientation Consideration
指導教授: 黃正弘
Huang, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 自然對流柱狀散熱鰭片最佳化設計
外文關鍵詞: Levenberg-Marquardt Method, Pin fin heat sink, Optimal fin design
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於應用拉凡格氏法(Levenberg-Marquardt Method)搭配套裝軟體 CFD-ACE+,探討在自然對流情況下的柱狀鰭片最佳尺寸及傾斜角之研究。
    本研究以PFHS及SHFHS為測試模型,並以SHFHS外形之體積作為限制條件,探討在自然對流下,以鰭片高度及直徑與鰭片放置傾斜角作為設計參數,在固定柱狀鰭片體積的條件下提高鰭片散熱性能為目標,並考慮鰭片和空氣之間的輻射熱傳效應,求得最佳化之鰭片外形及傾斜角。
    由最佳化結果可得,去除內部鰭片僅對外部鰭片做設計,可以獲得較佳的鰭片散熱性能。並以錐狀外形之鰭片為設計參數,建立一錐狀外形鰭片之方程式將其用於最佳化設計,由Design D之結果可得,在傾斜角下的錐狀外形鰭片有最佳之散熱效果,其熱阻較同體積之PFHS*降低了19.3%。
    最後吾人將PFHS、PFHS*、Design B*、Design C及Design D進行實驗驗證,利用紅外線熱像儀實際實驗量測散熱鰭片表面溫度分佈,以比較數值模擬與實際實驗的差異。由實驗結果可得,模擬結果與實際量測之溫度最大誤差小於3.68%,進而驗證本論文之準確性以及最佳化設計之有效性。此外,將計算模擬結果與實際量測之熱阻做比較,其最大誤差低於1.79%。
    柱狀散熱鰭片外形經過最佳化設計後熱阻確實能夠降低,經實驗驗證後,也證實數值模擬結果與實際情況十分吻合。

    A three-dimensional optimum pin fin heat sink (PFHS) design problem is investigated numerically, using Levenberg-Marquardt Method (LMM) and a commercial package CFD-ACE+, and experimentally under natural convection condition and fixed fin material constraint. The purpose is to design the optimal shapes and orientation angle of the PFHS and to enhance the heat dissipation performance. The design process is to obtain the optimal pin heights, pin diameters and orientation angle of the heat sink and then minimize the thermal resistance of the system. The effect of radiation heat transfer between heat sink and air is also included. Numerical results indicate that when considers only the perimeter pin fins and neglects the interior pin fins, the best heat sink performance can be obtained. A functional form of tapered pin is established and its design variables are also estimated. It is found that the tapered pin heat sink (design D) with 66o orientation angle has the lowest thermal resistance among all designs and its thermal resistance is 19.3% smaller than that of PFHS*. Finally, experimental verifications are performed on the fabricated PFHS, PFHS*, designs B*, C and D heat sinks, the measured temperatures by thermal camera are found in a good agreement with the numerical temperatures on those heat sink.

    摘要 I 英文延伸摘要 III 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 符號說明 XIV 第一章 緒論 1 1-1 研究背景與目的 1 1-2 研究方法 2 1-3文獻回顧 4 第二章 數值模擬 8 2-1 直接解問題 8 2-2 散熱鰭片設計問題:獲得最小熱阻 10 2-3 拉凡格氏法之極小化過程 11 2-4 散熱鰭片最佳化設計案例 13 2-5 數值計算流程 17 第三章 結果與討論 24 第四章 實驗驗證 48 4-1 實驗目的 48 4-2 紅外線輻射原理 48 4-3 實驗設備 49 4-3.1 散熱鰭片模型 49 4-3.2 紅外線熱像儀 50 4-3.4 散熱膏 51 4-3.5 傾斜角機構 51 4-4 實驗方式 52 4-5 實驗結果與討論 52 第五章 結論 80 參考文獻 82

    1. Kanyakam, Siwadol, Bureerat S. Multi objective evolutionary optimization of splayed pin-fin heat sink. Engineering Applications of Computational Fluid Mechanics 2011;5.4:553–65.
    2. Kou H.S., Lee J.J., Chen C.W., Optimum thermal analysis of a heat sink with various cross-sections by adjusting fin length and cross-section by adjusting fin length and cross-section. Heat Transfer Engineering 2008;29.6:537-45.
    3. Al-Damook A., Kapur N., Summers J.L., Thompson H.M., An Experimental and computational investigation of thermal air flows through perforated pin heat sinks, Applied thermal engineering 2015;89:365–76.
    4. Yang Y.T., Peng H.S., Numerical study of pin-fin heat sink with un-uniform fin height design, International Journal of Heat and Mass Transfer 2008;51:4788–796.
    5. Yu S.H., Lee K.S., Yook S.J., Natural convection around a radial heat sink, International Journal of Heat and Mass Transfer 2010;53:2935-938.
    6. Yu S.H., Lee K.S., Yook S.J., Optimum design of a radial heat sink under natural Convection, International Journal of Heat and Mass Transfer 2011;54:2499–505.
    7. Yu S.H., Jang D., Lee K.S., Effect of radiation in a radial heat sink under natural Convection, International Journal of Heat and Mass Transfer 2012;55:505–09.
    8. Jang D., Yu S.H., Lee K.S., Multidisciplinary optimization of a pin-fin radial heat sink for LED lighting applications, International Journal of Heat and Mass Transfer 2012;55:515–21.
    9. Jang D., Yook S.J., Lee K.S., Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications, Applied Energy 2014;116:260–68.
    10. Huang C.H., Wang G.J., A Design Problem to Estimate the Optimal Fin Shape of LED Lighting Heat Sinks, International Journal of Heat and Mass Transfer 2017;109:1205-217.
    11. Baldry M., Timchenko V., Menictas C., Optimal design of a natural convection heat sink for small thermoelectric cooling modules, Applied Thermal Engineering 2019;160:114062.
    12. Sparrow E.M., Vemuri S.B., Orientation effects on natural convection/radiation heat transfer from pin-fin arrays, International journal of heat and mass transfer 1986;29.3:359–68.
    13. Huang R.T., Sheu W.J., Wang C.C., Orientation effect on natural convective performance of square pin fin heat sinks, International Journal of Heat and Mass Transfer 2008;51:2368-376.
    14. Sertkaya A.A., Bilir S., Kargici S., Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection, Energy 2011;36:1513–517.
    15. Shen Q., Sun D., Xu Y., Jin T., Zhao X., Orientation effects on natural convection heat dissipation of rectangular fin heat sinks mounted on LEDs, International Journal of heat and mass transfer 2014;75:462–69.
    16. Effendi N.S., Kim K.J., Orientation effects on natural convective performance of hybrid fin heat sinks, Applied Thermal Engineering, 2017;123:527–36.
    17. Marquardt D.W., An algorithm for least-squares estimation of nonlinear parameters, Journal of the society for Industrial and Applied Mathematics, 1963;11:431–41.
    18. Chen P.F., Huang C.H., An Inverse Hull Design Problem in Optimizing the Desired Wake of Ships, Journal of Ship Research, 2002;46:138-47.
    19. Huang C.H., Chen Y.H., An Impingement Heat Sink Module Design Problem in Determining Simultaneously the Optimal Non-Uniform Fin Widths and Heights, International Journal of Heat and Mass Transfer, 2014;73:627–33.
    20. Huang C.H., Lin J.W., Optimal gas channel shape design for a serpentine PEMFC: Theoretical and experimental studies, Journal of the Electrochemical Society, 2009;156:B178-87.
    21. Huang C. H., Fan G.Y., Determination of Relative Positions and Phase Angle of Dual Piezoelectric Fans for Maximum Heat Dissipation of Fin Surface, International Journal of Heat and Mass Transfer, 2016;92:523-38.
    22. CFD-ACE+ user’s manual, ESI-CFD Inc., 2017.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE