| 研究生: |
張毓航 Teoh, Aik-Hang |
|---|---|
| 論文名稱: |
利用微波加熱瀝青製備奈米碳化矽之研究 Fabrication of Nano Silicon Carbide Using Microwave Heating of Coal Tar Pitch |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 碳化矽 、微波加熱 、碳熱還原法 、線狀奈米碳化矽 、無電鍍鎳 |
| 外文關鍵詞: | Silicon Carbide, Microwave Heating, Carbothermal Reaction, Silicon Carbide Nanowire, Electroless Plating of Nickel |
| 相關次數: | 點閱:107 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳化矽(SiC)為5G時代的重要半導體材料,本研究利用石油煉製的瀝青副產物與二氧化矽,透過微波高溫處理(溫度=1450℃),進行碳熱還原反應,進而長出奈米碳化矽。由SEM分析可觀察到產物為線狀奈米碳化矽和顆粒狀奈米碳化矽;藉由X 射線繞射儀分析可觀察到在 2θ 值為 35.7°、 60.0°、71.8°出現 β-SiC 結晶的特徵繞射峰;另藉由傅立葉轉換紅外線光譜儀 (FTIR)分析在797cm-1 位置有Si-C鍵結的特徵吸收峰, 顯示本研究已成功利用高效能的微波製備出奈米碳化矽材料。在比較利用微波和高溫爐高溫處理下的碳化矽產物方面,由XRD和FT-IR分析可觀察到利用微波高溫處理的產物中,碳化矽的結晶度比較高。此外,本研究改變微波製程處理溫度為1200℃、1300℃和1450℃,觀察其對生成SiC的影響。從SEM、XRD和FT-IR分析顯示,1200℃只能生成少量的碳化矽,產物中殘留未反應的碳和二氧化矽;而1450℃可以生成大量的奈米碳化矽。另外,改變瀝青:二氧化矽的比例為3:1、5:1和7:1的實驗結果顯示,隨著碳含量的增加,產物中殘留的二氧化矽越少,表示反應越完全。透過液相分離程序,獲得奈米線狀碳化矽。最後將奈米線狀碳化矽利用無電鍍鎳的方式長鎳,製備出高導熱係數的材料。
Silicon carbide (SiC) is an important device material for the 5G communication era. In this study, coal tar pitch and fumed silica are used as raw materials to prepare the SiC through microwave heating. From the SEM observation, the type of SiC products consist of nanowires and nanoparticles. XRD results showed that the 2θ values present at 35.7°, 60.0°, and 71.8°, which are typical characteristic diffraction peaks of β-SiC crystals. In addition, the characteristic peak of SiC in FTIR is presented at 797cm-1 which is the characteristic absorption peak of Si-C bonding. The above results show that nano-silicon carbide material was successfully manufactured by using cheap raw materials and high-efficiency green energy. The crystallinity of SiC prepared by microwave heating is higher than conventional heating from XRD and FTIR measurements. From SEM, XRD and FT-IR results, the yield of SiC produced by microwave heating controlled at 1200°C is lower than 1450°C. Furthermore, this study also manipulates the ratio of pitch: silica = 3:1, 5:1, and 7:1 to manufacture SiC by microwave oven. The results show that as the carbon content increases, the less silica remaining in the product, the greater the conversion of carbon and higher yield of SiC. High purity of SiC nanowire can be obtained through the liquid phase separation process. By using electroless plating of nickel on silicon carbide nanowire, this study can obtain a high thermal conductivity product.
1. Cisco Visual Networking Index Forecast and Trends. 2017-2022.
2. Emilio, M.d.P., Data Center UPS Requirements Drive Shift to SiC, in EE Times Europe. 2019.
3. 鄭大偉, 開發蛇紋石多元化工業材料之應用研究. 2014, 經濟部礦務局.
4. Cheung, R., Silicon Carbide Microelectromechanical Systems for Harsh Environments. 2006: Imperial College Press.
5. Hansen, M., K. Anderko, and H. Salzberg, Constitution of binary alloys. Journal of the Electrochemical Society, 1958. 105(12): p. 260C.
6. Patel, K. Computational Morphology Modelling and Mixed Mode Fracture Analysis of ZrB2/SiC Based Ceramic Nano-materials Using Molecular dynamics. 2018.
7. Inomata, Y., Crystal Chemistry of Silicon Carbide, in Silicon Carbide Ceramics—1: Fundamental and Solid Reaction, S. Sömiya and Y. Inomata, Editors. 1991, Springer Netherlands: Dordrecht. p. 1-11.
8. W.F.Knippenberg, Philips Res.Rep., 1963. 18(161).
9. Guichelaar, P.J., Acheson process, in Carbide, Nitride and Boride Materials Synthesis and Processing. 1997, Springer. p. 115-129.
10. Insley, H. and R.H. Ewell, Thermal behavior of the kaolin minerals. J. Res. Natl. Bur. Stand, 1935. 14(5): p. 615-27.
11. Chiang, Y.-M., et al., Reaction-formed silicon carbide. Materials Science and Engineering: A, 1991. 144(1): p. 63-74.
12. 戰可濤,線全鋼,鄭豐等, 激光法製備高純納米碳化矽粉體及其產率. 北京化工大學學報, 2002. 29(5): p. 75-78.
13. 于威,王保柱,孫運濤,等, 螺旋波等離子體化學氣相沉澱法製備納米碳化矽薄膜. 人工晶體學報, 2003. 32(3): p. 272-275.
14. Guanjun, Q., et al., Microstructure transmissibility in preparing SiC ceramics from natural wood. Journal of Materials Processing Technology, 2002. 120(1): p. 107-110.
15. 王振乾, 綠能所-農業廢棄物燒製碳化矽生產技術開發研究, 台灣中油股份有限公司, 2017, 南臺科技大學
16. Maroufi, S., M. Mayyas, and V. Sahajwalla, Novel synthesis of silicon carbide nanowires from e-waste. ACS Sustainable Chemistry & Engineering, 2017. 5(5): p. 4171-4178.
17. Power SiC: Materials, Devices, and Applications, Yole Développement, 2019 Power SiC: MOSFETs, SBDs and Modules, Knowmade, 2019 - SiC MOSFET Comparison, System Plus Consulting, 2019.
18. Chuang, A., 隨著寬能隙元件在電動車市場的機會大增,未來SiC與GaN在電動車市場是否發生短兵相接的情況,或各擁山頭?, in EE Times Taiwan. 2020.
19. 劉于葦, 什麼是SiC?, in EE Times China. 2019.
20. GaN on SiC: The Optimal Solution for 5G. 2019; Available from: https://www.wolfspeed.com/knowledge-center/article/gan-on-sic-the-optimal-solution-for-5g.
21. M. Akiyana, M.Y., Silicon carbide whiskers(Tokawhiskers) and their application, Silicon Carbide Ceramics 2. Elsevier Science Publishers LTD., 1991: p. p.117-138.
22. MEREDITH, R., Engineers' Handbook of Industerial Microwave Heating. 1998, London: The Institution of Engineering and Technology.
23. Mohd, N.A.B., Conventional and Microwave Pyrolysis of Empty Fruit Bunch and Rice Husk Pellets. 2017, University of Sheffield.
24. Adam, M.A.B., Understanding microwave pyrolysis of biomass materials. 2017, University of Nottingham.
25. Leonel, G., Conversion of a commercial microwave oven to a sintering furnace controlled by computer. 2015.
26. Lakshmanan, A., Sintering of ceramics: new emerging techniques. 2012: BoD–Books on Demand.
27. Clark, D.E. and W.H. Sutton, Microwave processing of materials. Annual Review of Materials Science, 1996. 26(1): p. 299-331.
28. Metaxas, A.a. and R.J. Meredith, Industrial microwave heating. 1983: IET.
29. Bykov, Y.V., K.I. Rybakov, and V. Semenov, High-temperature microwave processing of materials. Journal of Physics D: Applied Physics, 2001. 34(13): p. R55.
30. Lidström, P., et al., Microwave assisted organic synthesisÐa review. Tetrahedron, 2001. 57: p. 9225-9283.
31. Miura, M., et al., Rapid pyrolysis of wood block by microwave heating. Journal of Analytical and Applied Pyrolysis, 2004. 71(1): p. 187-199.
32. Haque, K.E., Microwave energy for mineral treatment processes—a brief review. International journal of mineral processing, 1999. 57(1): p. 1-24.
33. Abner Brenner and Grace E. Riddel (1946): Proc. 33rd Annual Convention of the American Electroplaters' Society page 23.
34. Successful use of AEROSIL fumed silica in liquid systems. 2015, EVONIK Industries.
35. Kahar, S., et al., Synthesis of silicon carbide nanowhiskers by microwave heating: effect of heating duration. Materials Research Express, 2017. 4(1): p. 015005.
36. Hashimoto, S., et al., Mechanism for the formation of SiC by carbothermal reduction reaction using a microwave heating technique. Journal of the Ceramic Society of Japan, 2011. 119(1394): p. 740-744.
37. Li, X., et al. Synthesis of Silicon carbide by carbothermal reduction of quartz in H2-Ar gas mixtures. in The Fourteenth International Ferroalloys Congress. 2015.
38. Voon, C.H., Synthesis of Silicon Carbide Nanowhiskers by Microwave Heating: Effect of Heating Temperature. Informacije MIDEM, 2017. 47(2): p. 101-112.
39. Van Dijen, F. and R. Metselaar, The chemistry of the carbothermal synthesis of β-SiC: Reaction mechanism, reaction rate and grain growth. Journal of the European Ceramic Society, 1991. 7(3): p. 177-184.
40. Kavitha, N., M. Balasubramanian, and Y.D. Vashistha, Synthesis and characterization of nano silicon carbide powder from agricultural waste. Transactions of the Indian Ceramic Society, 2011. 70(3): p. 115-118.
41. Li, Y., et al., Synthesis of silicon carbide whiskers using reactive graphite as template. Ceramics International, 2014. 40(1): p. 1481-1488.
42. Dhiman, R., E. Johnson, and P. Morgen, Growth of SiC nanowhiskers from wooden precursors, separation, and characterization. Ceramics International, 2011. 37(8): p. 3759-3764.
43. 劉怡彣、王智永,微波技術在碳纖與碳纖複材製作之應用. 2011; Available from: http://www.materialsnet.com.tw/DocView.aspx?id=9112.