| 研究生: |
吳姵萱 Wu, Pei-Hsuan |
|---|---|
| 論文名稱: |
具持續改善與知識管理機制之異常管理模式與技術研究 Research on an Abnormal Management Model and Technologies with Continuous Improvement and Knowledge Management Mechanisms |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 共同指導教授: |
陳宗義
Chen, Tsung-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 機器學習 、異常處理 、知識管理 、持續改善 |
| 外文關鍵詞: | Machine Learning, Exception Handling, Knowledge Management, Continuous Improvement |
| 相關次數: | 點閱:154 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統產業在異常發生時,多依靠人工方式進行處理和分析,且未能留下處理之經驗以及不具改善機制,以致常發生問題無法解決或處理時間過久之情事,更難以藉由異常事件進行改善。
隨著物聯網的普及機器學習技術的發展,資料蒐集與分析技術隨之進步,也利於異常處理與管理之改善。本研究針對異常處理之經驗擷取與持續改善之需求,提出一「具持續改善與知識管理機制之異常管理方法」與開發實現技術,並依此建立一「持續改善平台」,供產業參考應用,提升異常管理之效益。
針對研究目標,本研究之研究項目包括:具持續改善與知識管理機制之異常管理模式設計、異常處理程序設計、異常處理相關方法設計及知識管理模型設計,並針對異常管理模式中之重點功能,重要影響因素分析、經驗挖掘與經驗分享等技術以及持續改善機制進行開發。
本研究使用台中某一糕餅業者的異常處理案例與數據集進行實驗,驗證所提之方法與技術的可行性與有效性。經驗分享機制評量之準確率為96.73%、召回率為93.88%,若利用持續改善方式,使用固定長度之數據,定期更新重要影響因素,則準確率可達97.25%、召回率為95.33%,驗證持續改善機制之方法可行且有效。
When anomalies occur, traditional industries mostly rely on manual methods for processing and analysis, and there is no experience in handling and no improvement mechanism, so that problems often occur that cannot be solved or take too long to handle, and cannot be improved by abnormal events. .
With the popularization of the Internet of Things and the development of machine learning technology, data collection and analysis technology has also improved, which is also conducive to the improvement of exception handling and management. Aiming at the needs of experience acquisition and continuous improvement in exception handling, this research proposes an "abnormal management method with continuous improvement and knowledge management mechanism", and establishes a "continuous improvement platform" based on this for industry reference and application to improve exception management. benefit.
For the research objectives, the research projects of this research include: Exception management model design with continuous improvement and knowledge management mechanism, exception handling program design, exception handling related method design and knowledge management model design. And for the key functions in the exception management mode, analysis of important influencing factors, knowledge mining of exception rules, exception handling technology and continuous improvement mechanism development.
This study uses an exception handling case and dataset of a pastry business in Taichung to conduct experiments to verify the feasibility and effectiveness of the proposed methods and techniques. In the prediction of the exception handling model, the model prediction accuracy rate is 96.73% and the recall rate is 93.88%. However, if the concept of continuous improvement is used, fixed-length data is used, and important influencing factors are regularly updated, the model prediction accuracy rate can reach 97.25% , the recall rate is 95.33%, the experimental results of the method with continuous improvement mechanism are better than the method of directly using incremental data, so the method with continuous improvement mechanism is feasible and effective.
Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (2007). An application of reinforcement learning to aerobatic helicopter flight. Advances in neural information processing systems, 19, 1.
Abdulsalam, S., Adewole, K. S., & Jimoh, R. (2011). Stock trend prediction using regression analysis–a data mining approach.
Ali, Y., Farooq, A., Alam, T. M., Farooq, M. S., Awan, M. J., & Baig, T. I. (2019). Detection of schistosomiasis factors using association rule mining. IEEE Access, 7, 186108-186114.
Amin, M. T., Khan, F., & Imtiaz, S. (2019). Fault detection and pathway analysis using a dynamic Bayesian network. Chemical Engineering Science, 195, 777-790.
Antony, J. (2006). Six sigma for service processes. Business process management journal.
Antony, J., Kumar, M., & Madu, C. N. (2005). Six sigma in small‐and medium‐sized UK manufacturing enterprises: Some empirical observations. International Journal of Quality & Reliability Management.
Antony, J., Palsuk, P., Gupta, S., Mishra, D., & Barach, P. (2018). Six Sigma in healthcare: a systematic review of the literature. International Journal of Quality & Reliability Management.
Bai, C., Hu, Q., Xie, M., & Ng, S. H. (2005). Software failure prediction based on a Markov Bayesian network model. Journal of Systems and Software, 74(3), 275-282.
Bhuiyan, N., & Baghel, A. (2005). An overview of continuous improvement: from the past to the present. Management decision.
Borah, A., & Nath, B. (2018). Identifying risk factors for adverse diseases using dynamic rare association rule mining. Expert Systems with Applications, 113, 233-263.
Busoniu, L., Babuska, R., De Schutter, B., & Ernst, D. (2017). Reinforcement learning and dynamic programming using function approximators. CRC press.
Cakra, Y. E., & Trisedya, B. D. (2015). Stock price prediction using linear regression based on sentiment analysis. 2015 international conference on advanced computer science and information systems (ICACSIS),
Cantore, N., Clara, M., Lavopa, A., & Soare, C. (2017). Manufacturing as an engine of growth: Which is the best fuel? Structural Change and Economic Dynamics, 42, 56-66.
Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning of visual features. Proceedings of the European Conference on Computer Vision (ECCV),
Chen, M.-S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and data Engineering, 8(6), 866-883.
Chen, W.-C., Tseng, S.-S., & Wang, C.-Y. (2005). A novel manufacturing defect detection method using association rule mining techniques. Expert Systems with Applications, 29(4), 807-815.
Cheon, S.-P., Kim, S., Lee, S.-Y., & Lee, C.-B. (2009). Bayesian networks based rare event prediction with sensor data. Knowledge-Based Systems, 22(5), 336-343.
Cherrafi, A., Elfezazi, S., Chiarini, A., Mokhlis, A., & Benhida, K. (2016). The integration of lean manufacturing, Six Sigma and sustainability: A literature review and future research directions for developing a specific model. Journal of Cleaner Production, 139, 828-846.
Chien, C.-F., Hsu, C.-Y., & Chen, P.-N. (2013). Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence. Flexible Services and Manufacturing Journal, 25(3), 367-388.
Chung, S. Y., & Yoon, H. J. (2012). Affective classification using Bayesian classifier and supervised learning. 2012 12th International Conference on Control, Automation and Systems,
Coenen, F. (2011). Data mining: past, present and future. The Knowledge Engineering Review, 26(1), 25-29.
Czibula, G., Marian, Z., & Czibula, I. G. (2014). Software defect prediction using relational association rule mining. Information Sciences, 264, 260-278.
Dangare, C. S., & Apte, S. S. (2012). Improved study of heart disease prediction system using data mining classification techniques. International Journal of Computer Applications, 47(10), 44-48.
De Koning, H., Does, R. J., & Bisgaard, S. (2008). Lean Six Sigma in financial services. International Journal of Six Sigma and Competitive Advantage, 4(1), 1-17.
Dejaeger, K., Verbraken, T., & Baesens, B. (2012). Toward comprehensible software fault prediction models using bayesian network classifiers. IEEE Transactions on Software Engineering, 39(2), 237-257.
Dutta, A., Bandopadhyay, G., & Sengupta, S. (2012). Prediction of stock performance in the Indian stock market using logistic regression. International Journal of Business and Information, 7(1), 105.
Enguehard, J., O’Halloran, P., & Gholipour, A. (2019). Semi-supervised learning with deep embedded clustering for image classification and segmentation. IEEE Access, 7, 11093-11104.
Entezami, A., Shariatmadar, H., & Sarmadi, H. (2020). Condition assessment of civil structures for structural health monitoring using supervised learning classification methods. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(1), 51-66.
Fenton, N., & Neil, M. (2018). Risk assessment and decision analysis with Bayesian networks. Crc Press.
Gao, F., Li, M., & Clarke, S. (2008). Knowledge, management, and knowledge management in business operations. Journal of Knowledge Management.
Ghahramani, M., Qiao, Y., Zhou, M. C., O'Hagan, A., & Sweeney, J. (2020). AI-based modeling and data-driven evaluation for smart manufacturing processes. IEEE/CAA Journal of Automatica Sinica, 7(4), 1026-1037.
Gharahbagheri, H., Imtiaz, S., & Khan, F. (2017). Root cause diagnosis of process fault using KPCA and Bayesian network. Industrial & Engineering Chemistry Research, 56(8), 2054-2070.
Ginting, P. L., Dengen, N., & Taruk, M. (2019). Comparison of Priori and FP-Growth Algorithms in Determining Association Rules. 2019 International Conference on Electrical, Electronics and Information Engineering (ICEEIE),
Goh, Y. M., Ubeynarayana, C. U., Wong, K. L. X., & Guo, B. H. (2018). Factors influencing unsafe behaviors: A supervised learning approach. Accident Analysis & Prevention, 118, 77-85.
Hanea, A. M., Kurowicka, D., Cooke, R. M., & Ababei, D. (2010). Mining and visualising ordinal data with non-parametric continuous BBNs. Computational Statistics & Data Analysis, 54(3), 668-687.
Haraguchi, N., Cheng, C. F. C., & Smeets, E. (2017). The importance of manufacturing in economic development: has this changed? World Development, 93, 293-315.
Harding, J. A., Shahbaz, M., & Kusiak, A. (2006). Data mining in manufacturing: a review.
He, Z., Liu, H., Wang, Y., & Hu, J. (2017). Generative adversarial networks-based semi-supervised learning for hyperspectral image classification. Remote Sensing, 9(10), 1042.
Henderson, K. M., & Evans, J. R. (2000). Successful implementation of Six Sigma: benchmarking general electric company. Benchmarking: an international journal.
Hossain, M., Sattar, A. S., & Paul, M. K. (2019). Market basket analysis using apriori and FP growth algorithm. 2019 22nd International Conference on Computer and Information Technology (ICCIT),
Hosseini, S. M. S., Maleki, A., & Gholamian, M. R. (2010). Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications, 37(7), 5259-5264.
Hussain, S., Atallah, R., Kamsin, A., & Hazarika, J. (2018). Classification, clustering and association rule mining in educational datasets using data mining tools: A case study. Computer Science On-line Conference,
Ji, X., Henriques, J. F., & Vedaldi, A. (2019). Invariant information clustering for unsupervised image classification and segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision,
Jiao, J., & Zhang, Y. (2005). Product portfolio identification based on association rule mining. Computer-Aided Design, 37(2), 149-172.
Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A., Loskyll, M., Ojea, J. A., Solowjow, E., & Levine, S. (2019). Residual reinforcement learning for robot control. 2019 International Conference on Robotics and Automation (ICRA),
Juergensen, T. (2000). Continuous improvement: Mindsets, capability, process, tools and results. The Juergensen Consulting Group Inc., Indianapolis.
Kashwan, K. R., & Velu, C. (2013). Customer segmentation using clustering and data mining techniques. International Journal of Computer Theory and Engineering, 5(6), 856.
Kaur, M., & Kang, S. (2016). Market Basket Analysis: Identify the changing trends of market data using association rule mining. Procedia Computer Science, 85, 78-85.
Kim, K., & Choi, I. (2009). Active data acquisition for proactive exception handling in manufacturing. The International Journal of Advanced Manufacturing Technology, 43(3), 365-378.
Kim, K. I., Steinke, F., & Hein, M. (2010). Semi-supervised regression using Hessian energy with an application to semi-supervised dimensionality reduction.
Koski, T., & Noble, J. (2011). Bayesian networks: an introduction (Vol. 924). John Wiley & Sons.
Krishnaiah, V., Narsimha, G., & Chandra, N. S. (2013). Diagnosis of lung cancer prediction system using data mining classification techniques. International Journal of Computer Science and Information Technologies, 4(1), 39-45.
Kumbhare, T. A., & Chobe, S. V. (2014). An overview of association rule mining algorithms. International Journal of Computer Science and Information Technologies, 5(1), 927-930.
Kunwar, V., Chandel, K., Sabitha, A. S., & Bansal, A. (2016). Chronic Kidney Disease analysis using data mining classification techniques. 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence),
Landuyt, D., Broekx, S., D'hondt, R., Engelen, G., Aertsens, J., & Goethals, P. L. (2013). A review of Bayesian belief networks in ecosystem service modelling. Environmental Modelling & Software, 46, 1-11.
Lin, X., Cui, S., Han, Y., Geng, Z., & Zhong, Y. (2019). An improved ISM method based on GRA for hierarchical analyzing the influencing factors of food safety. Food Control, 99, 48-56.
Luo, Z., Sheth, A., Kochut, K., & Miller, J. (2000). Exception handling in workflow systems. Applied Intelligence, 13(2), 125-147.
Ma, B., Han, Y., Cui, S., Geng, Z., Li, H., & Chu, C. (2020). Risk early warning and control of food safety based on an improved analytic hierarchy process integrating quality control analysis method. Food Control, 108, 106824.
Marconi, N., de Borja Reis, C. F., & de Araújo, E. C. (2016). Manufacturing and economic development: The actuality of Kaldor's first and second laws. Structural Change and Economic Dynamics, 37, 75-89.
Marin‐Garcia, J. A., del Val, M. P., & Martín, T. B. (2008). Longitudinal study of the results of continuous improvement in an industrial company. Team Performance Management: An International Journal.
Moonen, L., Di Alesio, S., Binkley, D., & Rolfsnes, T. (2016). Practical guidelines for change recommendation using association rule mining. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering,
Morid, M. A., Kawamoto, K., Ault, T., Dorius, J., & Abdelrahman, S. (2017). Supervised learning methods for predicting healthcare costs: systematic literature review and empirical evaluation. AMIA Annual Symposium Proceedings,
Munirathinam, S., & Ramadoss, B. (2016). Predictive models for equipment fault detection in the semiconductor manufacturing process. IACSIT International Journal of Engineering and Technology, 8(4), 273-285.
Naresh, P., & Suguna, R. (2019). Association rule mining algorithms on large and small datasets: A comparative study. 2019 International Conference on Intelligent Computing and Control Systems (ICCS),
Niñerola, A., Sánchez-Rebull, M.-V., & Hernández-Lara, A.-B. (2020). Quality improvement in healthcare: Six Sigma systematic review. Health Policy, 124(4), 438-445.
Oliff, H., Liu, Y., Kumar, M., Williams, M., & Ryan, M. (2020). Reinforcement learning for facilitating human-robot-interaction in manufacturing. Journal of Manufacturing Systems, 56, 326-340.
Papananias, M., McLeay, T. E., Obajemu, O., Mahfouf, M., & Kadirkamanathan, V. (2020). Inspection by exception: A new machine learning-based approach for multistage manufacturing. Applied Soft Computing, 97, 106787.
Perveen, S., Shahbaz, M., Guergachi, A., & Keshavjee, K. (2016). Performance analysis of data mining classification techniques to predict diabetes. Procedia Computer Science, 82, 115-121.
Pheng, L. S., & Hui, M. S. (2004). Implementing and applying Six Sigma in construction. Journal of construction engineering and management, 130(4), 482-489.
Rajagopal, D. (2011). Customer data clustering using data mining technique. arXiv preprint arXiv:1112.2663.
Sagin, A. N., & Ayvaz, B. (2018). Determination of association rules with market basket analysis: application in the retail sector. Southeast Europe Journal of Soft Computing, 7(1).
Sanchez, L., & Blanco, B. (2014). Three decades of continuous improvement. Total Quality Management & Business Excellence, 25(9-10), 986-1001.
Sevinc, V., Kucuk, O., & Goltas, M. (2020). A Bayesian network model for prediction and analysis of possible forest fire causes. Forest Ecology and Management, 457, 117723.
ShangGuan, A. Y., Shui, X. F., Xie, L. B., Yu, Y. J., & Chang, K. Y. (2014). Raw Material Incoming Quality Abnormal Early Detection. ECS Transactions, 60(1), 697.
Shi, C., & Rothrock, L. (2022). Validating an abnormal situation prediction model for smart manufacturing in the oil refining industry. Applied Ergonomics, 101, 103697.
Shin, A. M., Lee, I. H., Lee, G. H., Park, H. J., Park, H. S., Yoon, K. I., Lee, J. J., & Kim, Y. N. (2010). Diagnostic analysis of patients with essential hypertension using association rule mining. Healthcare informatics research, 16(2), 77-81.
Siahaan, A. P. U., Ikhwan, A., & Aryza, S. (2018). A novelty of data mining for promoting education based on FP-growth algorithm.
Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292),
Song, Y.-H., Yu, H.-Q., Tan, Y.-c., Lv, W., Fang, D.-H., & Liu, D. (2020). Similarity matching of food safety incidents in China: Aspects of rapid emergency response and food safety. Food Control, 115, 107275.
Szirmai, A., & Verspagen, B. (2015). Manufacturing and economic growth in developing countries, 1950–2005. Structural Change and Economic Dynamics, 34, 46-59.
Tang, D., Yu, T.-H., & Kim, T.-K. (2013). Real-time articulated hand pose estimation using semi-supervised transductive regression forests. Proceedings of the IEEE international conference on computer vision,
Teles, G., Rodrigues, J., Rabê, R. A., & Kozlov, S. A. (2020). Artificial neural network and Bayesian network models for credit risk prediction. Journal of Artificial Intelligence and Systems, 2(1), 118-132.
Verdier, G., & Ferreira, A. (2010). Adaptive Mahalanobis distance and $ k $-nearest neighbor rule for fault detection in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 24(1), 59-68.
Wang, J., & Yue, H. (2017). Food safety pre-warning system based on data mining for a sustainable food supply chain. Food Control, 73, 223-229.
Wang, W., Hu, T., & Gu, J. (2022). Edge-cloud cooperation driven self-adaptive exception control method for the smart factory. Advanced Engineering Informatics, 51, 101493.
Wentholt, M. T., Fischer, A. R., Rowe, G., Marvin, H. J., & Frewer, L. J. (2010). Effective identification and management of emerging food risks: Results of an international Delphi survey. Food Control, 21(12), 1731-1738.
Wong, K. W., Zhou, S., Yang, Q., & Yeung, J. M. S. (2005). Mining customer value: From association rules to direct marketing. Data Mining and Knowledge Discovery, 11(1), 57-79.
Yi, X., Rao, F.-Y., Bertino, E., & Bouguettaya, A. (2015). Privacy-preserving association rule mining in cloud computing. Proceedings of the 10th ACM symposium on information, computer and communications security,
Yue, W., Chen, X., Gui, W., Xie, Y., & Zhang, H. (2017). A knowledge reasoning Fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition. Frontiers of Chemical Science and Engineering, 11(3), 414-428.
Zeng, L., Wang, B., Fan, L., & Wu, J. (2016). Analyzing sustainability of Chinese mining cities using an association rule mining approach. Resources Policy, 49, 394-404.
Zhan, J., Wu, C., Ma, X., Yang, C., Miao, Q., & Wang, S. (2022). Abnormal vibration detection of wind turbine based on temporal convolution network and multivariate coefficient of variation. Mechanical Systems and Signal Processing, 174, 109082.
Zhang, A., & Wang, J. (2020). A method for analyzing abnormality of automobile sunroof manufacturing process by using Bayesian method. 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA),
Zhang, C., Yao, X., & Zhang, J. (2015). Abnormal condition monitoring of workpieces based on RFID for wisdom manufacturing workshops. Sensors, 15(12), 30165-30186.
洪哲倫, 張志宏, & 林宛儒. (2019). 工業 4.0 與智慧製造的關鍵技術: 工業物聯網與人工智慧. 科儀新知(221), 19-25.
鄭祐昇. (2004). 運用資料探勘技術於知識圖之建立.
阮業春, & 吳旻穗. (2015). 退貨商品與製程異常之關聯分析-以工業電腦為例. 技術學刊, 30(3), 253-263.
研聯國際質量管理. (2018). 【質量管理】生產異常診斷與處理方法(附異常處理流程圖). Retrieved from:https://www.xuehua.us/a/5eb946b686ec4d39f33bbb6c?lang=zh-tw (April.28, 2022)
校內:2026-08-30公開