簡易檢索 / 詳目顯示

研究生: 孫正凱
Sun, Zheng-Kai
論文名稱: 應用離子吸附晶片處理檢體於電性鑑別偵測免疫檢測試劑之研究
The Study of Using Ion-adsorption Chip on Samples Processing to Detect the Impedance of Immunoassay Strip
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 153
中文關鍵詞: 電性鑑別三明治型反應免疫反應試劑
外文關鍵詞: Electro-microchip, Sandwich immune-reaction, Immune reagents
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用微機電製程整合吸附電極和檢測電極發展出微型化離子吸附晶片以降低尿液中離子雜訊干擾,並應用在提升電性免疫鑑別法於尿液檢體上濃度之鑑別度。本研究策略利用電吸附原理吸附帶電離子,降低溶液內離子濃度。晶片設計上利用上下兩層吸附電極晶片與PDMS微流道晶片做緊密結合,並在後端設置檢測電極以即時檢測溶液阻抗值變化。本研究之離子吸附晶片在檢體總量150 L之下,當施加電壓由0 V提升至0.8 V時,檢體之溶液阻抗值最高提升13.5%,降低其檢體溶液內之離子濃度。運用本研究之離子吸附晶片處理含有促黃體生成素(Luteinizing hormone, LH)尿液檢體後,再由電性免疫鑑別法對三明治型免疫試劑進行濃度鑑別分析,其免疫反應偵測時間為5分鐘,檢體需求量為70 L,結果在低頻率時(100 Hz) 對比未經由離子吸附晶片處理之電性免疫鑑別分析,其免疫檢測阻抗電性訊號差值相對濃度變化之斜率提高44%,而其濃度對應阻抗值之線性度R2值提高40%。本研究將微型離子吸附晶片應用在電性免疫鑑別法中以降低檢體中離子電訊號干擾,達到濃度檢測、成本低廉、低檢體用量及提升電性鑑別度之目的,提供了檢測免疫分析上一個全新的方向與思維。

    This study, a novel micro-electrode biochip integrated MEMS technology of adsorption electrodes and detection electrodes to reduce the interference of ions in urine. This applied to enhance the immune identification method in the concentration of the urine samples. The research strategy used electrosorption theory to reduce the ion concentration in solution. Chip design using two layers electrode chip with PDMS microfluidic chips, and set the detection electrodes in the back-end for real-time impedance detection. The study of ion adsorption chip in the total 150 μL samples below, when the applied voltage from 0 V to 0.8 V, samples of the solution resistance values up to 13.5% improved. The study used ion adsorption chip to process urine samples with luteinizing hormone (LH), and then identified by the electrical method of sandwich immune concentration discriminant analysis. The immune response detection time was 5 minutes with 70 μL samples. At low frequencies (100 Hz), the results of using ion adsorption chip compared with non-treated, the immune impedance detection slope of concentration increased 44%, and the concentration of the corresponding linear impedance degree R2 value increased 40%. In this study, the ion adsorption chip was used to improve the immune identification method, and to reduce the ion interference in samples. The concentration detection device to achieve the purpose of low cost, low-volume samples to identify and enhance the degree of impedance signals. It provided a new direction to improve the sensitivity of immunoassay method.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 X 表目錄 XVII 第一章 緒論 1 1-1 研究背景 1 1-2 免疫分析法 3 1-2-1 免疫分析基本理論 4 1-2-2 免疫分析檢測種類 4 1-2-3 免疫分析偵測方法 6 1-3 促黃體生成激素簡介 10 1-3-1 促黃體生成激素性質 10 1-3-2 Luteinizing hormone排卵免疫反應檢測試劑 12 1-4 文獻回顧 16 1-4-1 免疫分析之發展 16 1-4-2 電吸附原理 18 1-4-3 電吸附法之發展 22 1-5 研究動機與目的 30 1-6 研究架構 31 第二章 離子吸附晶片之設計與製作 33 2-1 電極晶片光罩設計 33 2-2 離子吸附晶片結構 35 2-3 電極晶片製程 38 2-3-1 ITO玻璃基材清洗 39 2-3-2 微影(Lithography) 41 2-3-3 電極蝕刻 46 2-4 PDMS微流道製作 49 2-4-1 PMMA微流道模具設計 49 2-4-2 PMMA微流道模具製作 50 2-4-3 PDMS灌注成形與翻模流程 56 2-5 晶片接合與組裝技術 61 第三章 實驗與研究方法 64 3-1 實驗儀器與設備 64 3-1-1 倒立式螢光光學顯微鏡 64 3-1-2 微量注射幫浦 65 3-1-3 真空抽氣系統 66 3-1-4 直流電源供應器 67 3-1-5 LCR 高精度量測儀 68 3-2 阻抗式免疫偵測系統之建立 69 3-2-1 離子吸附晶片之溶液阻抗檢測平台 70 3-2-2 免疫反應試劑之阻抗檢測平台 72 3-3 實驗藥品 75 3-4 實驗方法 77 3-4-1 離子吸附晶片實驗方法 77 3-4-1-1 離子吸附晶片構造 77 3-4-1-2 不同吸附電壓對PBS之離子吸附實驗 79 3-4-1-3 電吸附時間對PBS電吸附效果實驗 80 3-4-2 尿液電吸附效果實驗 82 3-4-3 頻率阻抗圖形分析 82 3-4-4 三明治型免疫反應試劑阻抗檢測實驗 84 3-4-4-1 阻抗式免疫分析檢測模型 84 3-4-4-2 三明治型免疫反應試劑之頻率阻抗分析 87 3-4-4-3 電吸附處理後LH免疫反應試劑之阻抗分析 89 第四章 結果與討論 91 4-1 量測阻抗等效模型建立 91 4-2 量測等效電路模型驗證 93 4-3 電吸附法吸附PBS溶液測試 98 4-3-1 不同吸附電壓下對PBS溶液吸附測試 98 4-3-2 不同電吸附時間對PBS溶液吸附測試 105 4-3-3 吸附電極面積與檢體流速之吸附測試 110 4-4 電吸附法吸附尿液測試 116 4-5 三明治型免疫反應試劑阻抗檢測分析 120 4-5-1 三明治型免疫反應試劑定性分析 120 4-5-2 免疫反應試劑量測阻抗分析 123 4-5-3 三明治型免疫反應試劑之頻率阻抗分析 127 4-5-4 電吸附處理後LH免疫反應試劑之阻抗分析 132 4-5-5 低濃度LH免疫反應試劑之阻抗分析 137 第五章 結論與未來展望 140 5-1 結論 140 5-2 未來展望 144 參考文獻 145 附錄 153

    [1] T. Porstmann and S.T. Kiessig, “Enzyme immunoassay techniques and overview,” Journal of Immunological Methods, 150, pp. 5-21, 1992.
    [2] Chaubey and B. D. Malhotra, “Mediated biosensors,” Biosensors and Bioelectronics, 17, pp. 441-456, 2002.
    [3] M. Hedenfalk, P. Adlercreutz and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system,” Analytica Chimica Acta, 341, pp. 269-274, 1997.
    [4] F. Hardy, L. Djavadi-Ohaniance and M. E. Goldberg, “Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay,” Journal of immunological methods, 200, pp. 155-159, 1997.
    [5] P. Onnerfjord, S. Eremin, J. Emneus and G. Marko-Varga, “Fluorescence polarisation for immunoreagent characterization,” Journal of immunological methods, 213, pp. 31-39, 1998.
    [6] J. A. Schmid and A. Billich, “Simple method for high sensitivity chemiluminescence ELISA using conventional laboratory equipment,” BioTechniques, 22, pp. 278-279, 1997.
    [7] C. A. Janeway, P. Travers, M. Walport, and M. J. “Shlomchik, Immunobiology,” 5th edition, Garland Science, 2001.
    [8] 聯華安速百爾排卵預測試劑說明書,聯華生技股份有限公司,1998.
    [9] R. J. Fehring, M. Schneider, K. Raviele, “Variability in the phases of the menstrual cycle,” Journal of Obstetric, Gynecologic, & Neonatal Nursing, 35(3), 376-384, 2006.
    [10] J. E. Morley, F. E. Kaiser, M. Horace, “Longitudinal Changes in Testosterone, Luteinizing Hormone, and Follicle-Stimulating Hormone in Healthy Older Men,” Metabolism, 46(4), pp. 410-413, 1997.
    [11] S. Srikanta, A. Rabizadeh, M.A. Omar, “Assay for islet cell antibodies. Protein A---monoclonal antibody method,” American Diabetes Association, 34(3), pp. 300-305, 1985.
    [12] E. B. Rudy and P. Estok, “Professional and Lay Interrater Reliability of Urinary Luteinizing Hormone Surges Measured by OvuQuick Test,” Journal of Obstetric, Gynecologic, & Neonatal Nursing, 21(5), pp. 407-411, 1992.
    [13] R. W. McNaught and J. T. France, “Studies of the biochemical basis of steroid sulphatase deficiency: Preliminary evidence suggesting a defect in membrane-enzyme structure,” Journal of Steroid Biochemistry, 13(3), pp. 363-373, 1980.
    [14] N. Eric and C. Gary, “Body Size and 24-Hour urine Composition,” American Journal of Kidney Diseases, 48(6), pp. 905-915, 2006.
    [15] J. P. Gosling, “A decade of development in immunoassay methodology,” Clinical Chemistry, 36, pp. 1408-1427, 1990.
    [16] J. S. Rossier and H. H. Girault, “Enzyme linked immunosorbent assay on a microchip with electrochemical detection,” Lab on a chip, 1, pp. 153-157, 2001.
    [17] W. C. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, 281, 2016-2018, 1998.
    [18] M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, 281, pp. 2013-2016, 1998.
    [19] J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell and J. Emn, “Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection,” Analytical Chemistry, 74, pp. 2994-3004, 2002.
    [20] C. A. Marquette and L. J. Blum, “Electro-chemiluminescent biosensing,” Analytical and Bioanalytical Chemistry, 390, pp. 155-168, 2003.
    [21] M. Lin, Y. C. Lin, K.C. Su, Y. T. Wang, T. C. Chang and H. P. Lin, “A novel real-time immunoassay utilizing an electro-immunosensing microchip and gold nanoparticles for signal enhancement,” Sensors and Actuators B-Chemical, 117, pp. 451-456, 2006.
    [22] A. Abera and J. W. Choi, “Quantitative lateral flow immunosensor using carbon nanotubes as label,” Analytical Methods, 2, pp.1819-1822, 2010.
    [23] V. M. Fischer, “In situ electrochemical regeneration of active carbon, ” Koninklijke Wöhrmann, 2001.
    [24] A. Ban, A. Schafer, H. Wendt, “Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents,” Journal of Applied Electrochemistry, 28, pp. 227-236, 1998.
    [25] Lippmann, “Relations entre les phénomènes electriques et capillaries,” Annales de Chimie – Physique, 5, pp. 494-454, 1875.
    [26] M. Gouy, Annales de Chimie – Physique, 7, pp. 145-150, 1903.
    [27] M. Gouy, Annales de Chimie – Physique, 7, pp. 129-135, 1917.
    [28] J. Bockris, E. Gileadi, and K. Muller, “A molecular theory of charge dependence of competitive adsorption,” Electrochimica Acta 12(9), pp. 1301-1321, 1967.
    [29] R. H. Perry, D. W. Green, and J. O. Maloney, Perry's chemical engineers' handbook, New York, McGraw-Hill , 1997.
    [30] F. Posey and T. Morozumi, “Theory of potentiostatic and galvanostatic charging of double layer in porous electrodes,” Journal of the Electrochemical Society 113(2), pp. 176-184, 1966.
    [31] R. S. Eisinger, and G. E. Keller, “Electrosorption: A Case Study on Removal of Dilute Organics from Water,” Environmental Progress, 9(4), pp. 235-244, 1990.
    [32] C. C. Huang and Y. J. Su, “Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths,” Journal of Hazardous Materials, 175, pp. 477-483, 2009.
    [33] M. Łukaszewski, K. Kuśmierczyk, J. Kotowski, H. Siwek and A. Czerwiński, “Electrosorption of hydrogen into palladium-gold alloys,” Journal of Solid State Electrochemistry, 7, pp. 69-76, 2002.
    [34] J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, “Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes,” Journal of Applied Electrochemistry, 26, pp. 1007-1018, 1996.
    [35] H. Li, T. Lu, L. Pan, Y. Zhang and Z. Sun “Electrosorption behavior of graphene in NaCl solutions,” Journal of Materials Chemistry, 19, pp. 6773–6779, 2009.
    [36] Z. Chen, C. Song, X. Sun, H. Guo and G. Zhu, “Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes,” Desalination, 267, pp. 239-243, 2011.
    [37] T. J. Welgemoeda, C. F. Schutte, “Capacitive deionization technology: An alternative desalination solution,” Desalination, 183, pp. 327-340, 2005.
    [38] http://www.medimate.nl/uk_users
    [39] H. illebrandt, G. Wiegand, M. Tanaka and E. Sackmann, “High Electric Resistance Polymer/Lipid Composite Films on Indium-Tin-Oxide Electrodes,” Langmuir, 15, pp. 8451-8459 , 1999.
    [40] B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood and D. J. Beebe, “Three dimensional nicro-channel gabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Micro- Electromechanical Systems, 9, pp. 76-81, 2000.
    [41] M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, pp. 1063-1075, 1994.
    [42] http://www.nibsc.ac.uk/documents/ifu/80-552.pdf
    [43] 吳浩青, 李永舫, 電化學動力學, 科技圖書公司出版, 2001.
    [44] O. Niwa, M. Morita and H. Tabei, “Electrochemical Behavior of Reversible Redox Species at Interdigitated Array Electrodes with Different Geometries:Consideration of Redox Cycling and Collection Efficiency,” Analytical Chemistry, 62, pp. 447-452, 1990.
    [45] O. Niwa, M. Morita, and H. Tabei, “Highly sensitive and selective voltammetric detection of dopamine with vertically separated interdigitated array electrodes,” Electroanalysis, 3, pp. 163-168,1991.
    [46] M. Uotila, E. Ruoslahti and E. Engvall, “Two-site sandwich enzyme immunoassay with monoclonal antibodies to human alpha-fetoprotein,” Journal of Immunological Methods, 42(1), pp. 11-15, 1981.
    [47] G. L. Coster, T. C. Chilcott, A. C. Coster, “Impedance spectroscopy of interfaces, membranes and ultrastructures,” Bioelectrochemistry and Bioenergetics, 40, pp. 79-98, 1996.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE