| 研究生: |
孫正凱 Sun, Zheng-Kai |
|---|---|
| 論文名稱: |
應用離子吸附晶片處理檢體於電性鑑別偵測免疫檢測試劑之研究 The Study of Using Ion-adsorption Chip on Samples Processing to Detect the Impedance of Immunoassay Strip |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 電性鑑別 、三明治型反應 、免疫反應試劑 |
| 外文關鍵詞: | Electro-microchip, Sandwich immune-reaction, Immune reagents |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用微機電製程整合吸附電極和檢測電極發展出微型化離子吸附晶片以降低尿液中離子雜訊干擾,並應用在提升電性免疫鑑別法於尿液檢體上濃度之鑑別度。本研究策略利用電吸附原理吸附帶電離子,降低溶液內離子濃度。晶片設計上利用上下兩層吸附電極晶片與PDMS微流道晶片做緊密結合,並在後端設置檢測電極以即時檢測溶液阻抗值變化。本研究之離子吸附晶片在檢體總量150 L之下,當施加電壓由0 V提升至0.8 V時,檢體之溶液阻抗值最高提升13.5%,降低其檢體溶液內之離子濃度。運用本研究之離子吸附晶片處理含有促黃體生成素(Luteinizing hormone, LH)尿液檢體後,再由電性免疫鑑別法對三明治型免疫試劑進行濃度鑑別分析,其免疫反應偵測時間為5分鐘,檢體需求量為70 L,結果在低頻率時(100 Hz) 對比未經由離子吸附晶片處理之電性免疫鑑別分析,其免疫檢測阻抗電性訊號差值相對濃度變化之斜率提高44%,而其濃度對應阻抗值之線性度R2值提高40%。本研究將微型離子吸附晶片應用在電性免疫鑑別法中以降低檢體中離子電訊號干擾,達到濃度檢測、成本低廉、低檢體用量及提升電性鑑別度之目的,提供了檢測免疫分析上一個全新的方向與思維。
This study, a novel micro-electrode biochip integrated MEMS technology of adsorption electrodes and detection electrodes to reduce the interference of ions in urine. This applied to enhance the immune identification method in the concentration of the urine samples. The research strategy used electrosorption theory to reduce the ion concentration in solution. Chip design using two layers electrode chip with PDMS microfluidic chips, and set the detection electrodes in the back-end for real-time impedance detection. The study of ion adsorption chip in the total 150 μL samples below, when the applied voltage from 0 V to 0.8 V, samples of the solution resistance values up to 13.5% improved. The study used ion adsorption chip to process urine samples with luteinizing hormone (LH), and then identified by the electrical method of sandwich immune concentration discriminant analysis. The immune response detection time was 5 minutes with 70 μL samples. At low frequencies (100 Hz), the results of using ion adsorption chip compared with non-treated, the immune impedance detection slope of concentration increased 44%, and the concentration of the corresponding linear impedance degree R2 value increased 40%. In this study, the ion adsorption chip was used to improve the immune identification method, and to reduce the ion interference in samples. The concentration detection device to achieve the purpose of low cost, low-volume samples to identify and enhance the degree of impedance signals. It provided a new direction to improve the sensitivity of immunoassay method.
[1] T. Porstmann and S.T. Kiessig, “Enzyme immunoassay techniques and overview,” Journal of Immunological Methods, 150, pp. 5-21, 1992.
[2] Chaubey and B. D. Malhotra, “Mediated biosensors,” Biosensors and Bioelectronics, 17, pp. 441-456, 2002.
[3] M. Hedenfalk, P. Adlercreutz and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system,” Analytica Chimica Acta, 341, pp. 269-274, 1997.
[4] F. Hardy, L. Djavadi-Ohaniance and M. E. Goldberg, “Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay,” Journal of immunological methods, 200, pp. 155-159, 1997.
[5] P. Onnerfjord, S. Eremin, J. Emneus and G. Marko-Varga, “Fluorescence polarisation for immunoreagent characterization,” Journal of immunological methods, 213, pp. 31-39, 1998.
[6] J. A. Schmid and A. Billich, “Simple method for high sensitivity chemiluminescence ELISA using conventional laboratory equipment,” BioTechniques, 22, pp. 278-279, 1997.
[7] C. A. Janeway, P. Travers, M. Walport, and M. J. “Shlomchik, Immunobiology,” 5th edition, Garland Science, 2001.
[8] 聯華安速百爾排卵預測試劑說明書,聯華生技股份有限公司,1998.
[9] R. J. Fehring, M. Schneider, K. Raviele, “Variability in the phases of the menstrual cycle,” Journal of Obstetric, Gynecologic, & Neonatal Nursing, 35(3), 376-384, 2006.
[10] J. E. Morley, F. E. Kaiser, M. Horace, “Longitudinal Changes in Testosterone, Luteinizing Hormone, and Follicle-Stimulating Hormone in Healthy Older Men,” Metabolism, 46(4), pp. 410-413, 1997.
[11] S. Srikanta, A. Rabizadeh, M.A. Omar, “Assay for islet cell antibodies. Protein A---monoclonal antibody method,” American Diabetes Association, 34(3), pp. 300-305, 1985.
[12] E. B. Rudy and P. Estok, “Professional and Lay Interrater Reliability of Urinary Luteinizing Hormone Surges Measured by OvuQuick Test,” Journal of Obstetric, Gynecologic, & Neonatal Nursing, 21(5), pp. 407-411, 1992.
[13] R. W. McNaught and J. T. France, “Studies of the biochemical basis of steroid sulphatase deficiency: Preliminary evidence suggesting a defect in membrane-enzyme structure,” Journal of Steroid Biochemistry, 13(3), pp. 363-373, 1980.
[14] N. Eric and C. Gary, “Body Size and 24-Hour urine Composition,” American Journal of Kidney Diseases, 48(6), pp. 905-915, 2006.
[15] J. P. Gosling, “A decade of development in immunoassay methodology,” Clinical Chemistry, 36, pp. 1408-1427, 1990.
[16] J. S. Rossier and H. H. Girault, “Enzyme linked immunosorbent assay on a microchip with electrochemical detection,” Lab on a chip, 1, pp. 153-157, 2001.
[17] W. C. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, 281, 2016-2018, 1998.
[18] M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, 281, pp. 2013-2016, 1998.
[19] J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell and J. Emn, “Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection,” Analytical Chemistry, 74, pp. 2994-3004, 2002.
[20] C. A. Marquette and L. J. Blum, “Electro-chemiluminescent biosensing,” Analytical and Bioanalytical Chemistry, 390, pp. 155-168, 2003.
[21] M. Lin, Y. C. Lin, K.C. Su, Y. T. Wang, T. C. Chang and H. P. Lin, “A novel real-time immunoassay utilizing an electro-immunosensing microchip and gold nanoparticles for signal enhancement,” Sensors and Actuators B-Chemical, 117, pp. 451-456, 2006.
[22] A. Abera and J. W. Choi, “Quantitative lateral flow immunosensor using carbon nanotubes as label,” Analytical Methods, 2, pp.1819-1822, 2010.
[23] V. M. Fischer, “In situ electrochemical regeneration of active carbon, ” Koninklijke Wöhrmann, 2001.
[24] A. Ban, A. Schafer, H. Wendt, “Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents,” Journal of Applied Electrochemistry, 28, pp. 227-236, 1998.
[25] Lippmann, “Relations entre les phénomènes electriques et capillaries,” Annales de Chimie – Physique, 5, pp. 494-454, 1875.
[26] M. Gouy, Annales de Chimie – Physique, 7, pp. 145-150, 1903.
[27] M. Gouy, Annales de Chimie – Physique, 7, pp. 129-135, 1917.
[28] J. Bockris, E. Gileadi, and K. Muller, “A molecular theory of charge dependence of competitive adsorption,” Electrochimica Acta 12(9), pp. 1301-1321, 1967.
[29] R. H. Perry, D. W. Green, and J. O. Maloney, Perry's chemical engineers' handbook, New York, McGraw-Hill , 1997.
[30] F. Posey and T. Morozumi, “Theory of potentiostatic and galvanostatic charging of double layer in porous electrodes,” Journal of the Electrochemical Society 113(2), pp. 176-184, 1966.
[31] R. S. Eisinger, and G. E. Keller, “Electrosorption: A Case Study on Removal of Dilute Organics from Water,” Environmental Progress, 9(4), pp. 235-244, 1990.
[32] C. C. Huang and Y. J. Su, “Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths,” Journal of Hazardous Materials, 175, pp. 477-483, 2009.
[33] M. Łukaszewski, K. Kuśmierczyk, J. Kotowski, H. Siwek and A. Czerwiński, “Electrosorption of hydrogen into palladium-gold alloys,” Journal of Solid State Electrochemistry, 7, pp. 69-76, 2002.
[34] J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, “Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes,” Journal of Applied Electrochemistry, 26, pp. 1007-1018, 1996.
[35] H. Li, T. Lu, L. Pan, Y. Zhang and Z. Sun “Electrosorption behavior of graphene in NaCl solutions,” Journal of Materials Chemistry, 19, pp. 6773–6779, 2009.
[36] Z. Chen, C. Song, X. Sun, H. Guo and G. Zhu, “Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes,” Desalination, 267, pp. 239-243, 2011.
[37] T. J. Welgemoeda, C. F. Schutte, “Capacitive deionization technology: An alternative desalination solution,” Desalination, 183, pp. 327-340, 2005.
[38] http://www.medimate.nl/uk_users
[39] H. illebrandt, G. Wiegand, M. Tanaka and E. Sackmann, “High Electric Resistance Polymer/Lipid Composite Films on Indium-Tin-Oxide Electrodes,” Langmuir, 15, pp. 8451-8459 , 1999.
[40] B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood and D. J. Beebe, “Three dimensional nicro-channel gabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Micro- Electromechanical Systems, 9, pp. 76-81, 2000.
[41] M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, pp. 1063-1075, 1994.
[42] http://www.nibsc.ac.uk/documents/ifu/80-552.pdf
[43] 吳浩青, 李永舫, 電化學動力學, 科技圖書公司出版, 2001.
[44] O. Niwa, M. Morita and H. Tabei, “Electrochemical Behavior of Reversible Redox Species at Interdigitated Array Electrodes with Different Geometries:Consideration of Redox Cycling and Collection Efficiency,” Analytical Chemistry, 62, pp. 447-452, 1990.
[45] O. Niwa, M. Morita, and H. Tabei, “Highly sensitive and selective voltammetric detection of dopamine with vertically separated interdigitated array electrodes,” Electroanalysis, 3, pp. 163-168,1991.
[46] M. Uotila, E. Ruoslahti and E. Engvall, “Two-site sandwich enzyme immunoassay with monoclonal antibodies to human alpha-fetoprotein,” Journal of Immunological Methods, 42(1), pp. 11-15, 1981.
[47] G. L. Coster, T. C. Chilcott, A. C. Coster, “Impedance spectroscopy of interfaces, membranes and ultrastructures,” Bioelectrochemistry and Bioenergetics, 40, pp. 79-98, 1996.
校內:2021-12-31公開