簡易檢索 / 詳目顯示

研究生: 周建安
Chou, Chien-An
論文名稱: 變化比熱值由1.093至1.4理想氣體三震波匯流場理論多重解分析
A Theoretical Analyses of Multiple Solutions of Three-shock Confluences in Specific Heat Ratios Varying from 1.093 to 1.4
指導教授: 劉中堅
Liu, Jong-Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 119
中文關鍵詞: 三震波理論多重解三震波匯流場
外文關鍵詞: Three-shock confluences, multiplicity of three-shock theoretical solution
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討比熱值 ( )介於1.093與1.4之理想氣體三震波匯流場理論多重解及其所對應之壓力─轉折角震波極圖解,建構出 =1.1115、1.179、1.244、1.344理想氣體三震波匯流場於 ( )平面上之理論雙解 ( 、 )曲線、Wuest limit I曲線、Wuest limit II曲線及入射震波下游馬赫數為1.0條件之曲線解所構成的解域。在這些比熱值範圍內應用理想氣體三震波匯流場十階多項式理論計算 ( )平面上有下列的結果:
    1. 穩態三震波匯流場理論多重解於 ( , )平面上 曲線與 曲線在 之後會相切於正與負 的平面,此切點是 曲線 不連續現象發生的上端點,也就是定義為Fall點 ( 三重根),簡稱為F點,Fall的發生同時造成了在正 平面的一個向左開口的 迴路曲線,在負 平面的一個向左開口的 迴路曲線,並且 迴路分為上曲線與下曲線。 的F點發生在 , =1.3847的解域,負 平面上的Fall點發生在 =1.0的極限位置, >1.3847負 平面不存在Fall點。正 平面的Fall點於 >1.1115都存在。其中 為入射震波上游流場馬赫數, 為入射震波下游流場轉折角。
    2. 對 穩態三震波匯流場理論多重解於 ( , )平面都存在I、C、D點,他們的定義為:I點是Wuest limit I與 上曲線相切的點、C點是Wuest limit I與 曲線相切的點、D點是Wuest limit II上曲線與 下曲線相切的點。 增加到 之 ( , )平面上,I點與F點逐漸靠近,當 增加到1.179時,I點、F點與B點三者相重合,並且隨 持續增加,I點消失,同時,B點起始於 =1.179,B點的定義是Wuest limit I與 曲線相切的點,B點隨著 增加會逐漸移動至Fall下游的Fall< <C點之間,並且B、C兩點隨著 增加相互靠近,直到 時解域上的B、C兩點重合後消失。D點隨著 增加而朝 較小的區域移動直到 ,此點發生在Wuest limit II與 下曲線相切於Fall之下端點 (E點),當 ,此D點繼續隨著 增加,此D點銳變為A點,因為此時與Wuest limit II曲線相切的雙解曲線已由 轉變為 。
    3. 對1.093< <1.4之穩態三震波匯流場理論 重根發生時相對於 的位置,於 ( , )平面上,依 由小到大,可藉第1、2點所定義的F、A、B、C點來描述:
    <1.179: 發生都在 之上方,通過C點之後 ( 比C點之 為大), 發生在 下方。1.179< <1.244:在正 區域的F點上游, 發生在 上方,經過F點, 發生在 下方,通過B點, 發生在 上方,然後通過C點, 發生在 下方。 1.244< <1.344:正 區域的F點上游, 發生在 上方,經過F點, 發生在 下方。 >1.344: A點存在於Fall上游,通過A點, 發生在 上方,通過A點, 發生在 下方,其下游之F點不影響 發生時相對於 的位置,Fall下游的 仍發生在 的下方。上述沒有說明正與負 區域代表正與負 區域都適用。
    4. 對1.093< <1.4之穩態三震波匯流場理論 重根發生時相對於 的位置,於 ( , )平面上,依 由小到大,負 平面上的 重根發生都在 上方,正 平面上的 重根可藉第2點所定義的D點、I點來描述:
    <1.179: 上曲線發生在 上方,通過I點, 發生在 下方, 發生在 上方,經過D點, 發生在 下方。1.179< <1.344: 上曲線都發生在 下方。 下曲線發生在 上方,經過D點, 發生在 下方。 >1.344: 正 平面 上曲線與下曲線,都已無 曲線與Wuest limit I & II曲線之切點存在, 都發生在 下方。

    Multiply possible three shock theoretical solutions and corresponding pressure-deflection shock polar solutions of perfect gas three-shock confluences with the specific heat ratio ( ) varying between 1.093 and 1.4 are investigated in this work. The preliminary maps of the multiplicity of three-shock theoretical solutions of the confluences of =1.1115, 1.179, 1.244 and 1.344 are constructed on the ( , ) plane, is the incident shock Mach number, is flow reflection behind the incident shock, using , theoretical double-root lines, Wuest limit I line, Wuest limit II line, and ( , Mach number downstream of the incident shock) line. The tenth degree polynomial equation of the three-shock confluences (Liu 2003) is applied theoretical for analyses, and the following results are obtained expressed on the ( , ) plane, as from 1.093 to 1.4.
    1. There are four point of tangency which determine the locations of double roots relative to point. They are: point A defined by the point of tangency between and Wuest limit II curve; point B defined by that between curve and Wuest limit I curve; point C defined the same as point B, but occurring at larges ; point F defined by that between curve and curve. For <1.179, the location of the occurrence of roots vary from above to below it, as increases from unity to pass point C. For 1.179< <1.244, the location of the roots vary from above to below it, as the passes point F. The roots then move above , as point B is past, and they then move below , as point C is past. For 1.244< 1.344, the roots move from above point to below it, as increases to pass point A. The downstream F point does not affect the relative location of roots relative to point for this range of .
    2. There are two points of tangency which determine the locations of double roots relative to point. They are: point I defined by the point of tangency between (upper lone) curve and Wuest limit I curve; point D defined by that between (lower line) curve are Wuest limit II curve. For the upper curve, the location of roots vary from above point to below it, as increases from unity to pass point I for 1.093< . These roots then remain below point for >1.179. For the lower curve, the location of roots move from above point to below it, as the passes point D for 1.093< . These roots then remain below point for >1.344.
    The significance of the location of or double roots relative to point is the dependence of the classification of the physical possibility ( ) or impossibility (< ) of these three-shock theoretical double roots on point.

    摘要 ………………………..………………………..…………..Ⅰ 致謝 ……………………………………….……..….……………….VII 目錄 ……………………….…………………...…...…………….VIII 圖目錄 ………………………………………..……………..……….....X 表目錄 ………………………………………..……………..…………XI 符號說明 ……………………………………………………….......XIII 第一章 緒論 ….………………………………..……………………… 1 第二章 理想氣體三震波匯流場之三震波理論多重解現象描述................................................................................................................5 2-1三震波匯流場之三震波理論分析........…………………………….......……….. 7 2-2三震波匯流場之三震波理論十階多項式多重解理論.…..……………...……..10 2-3三震波匯流場之三震波理論壓力與轉折角( )震波極圖解法............…....15 第三章 不同比熱值 ( )理想氣體三震波匯流場理論之多重解分析………………………………………………….……………20 3-1 =1.1115 ( )震波極圖解系列分析…………..……...…….………..… 22 3-2 =1.179 ( )震波極圖解系列分析……….…..…………………….….. 27 3-3 =1.244 ( )震波極圖解系列分析……………...…………….………...36 3-4 =1.344 ( )震波極圖解系列分析...…………….……..…………….... 42 第四章 理想氣體不同比熱值之三震波匯流場理論多重解之解域分析……....................................................................................….68 4-1理想氣體穩態馬赫反射流場多重解於( )平面之曲線圖分析.....................………………………….……………..………………………..69 4-1-1 =1.1115 之( )解域圖…………....…………….……………………..69 4-1-2 =1.179之( )解域圖…...………………………………………………73 4-1-3 =1.244 之( )解域圖…..……………………………………………...78 4-1-4 =1.344 之( )解域圖…..……………………………………….……..82 4-1-5 =1.093、1.4 之( )解域圖......................................................................86 4-2 三震波匯流場於( )平面上隨 值變化之雙解曲線與Wuest limit I & II曲線之特殊點特性討論..........................................................................................88 4-2-1 隨 變化之 雙解曲線與三重根 (Wuest limit I 或 Wuest limit II)曲線發生相切的特殊點..........................................................................................89 4-2-2 隨 變化之雙解曲線 ( 或 )與Wuest limit I相穿..................97 4-3 曲線在 ( )平面之特定 發生跳躍之現象 ………………....100 第五章 結論 ……………………….…………….....….…………….104 參考文獻 ……………………………………………...……..……….108 附錄……………………………………………………...…………….112 自述

    Ames Aeronautical Lab. Rep., “AMES Equations, Tables and Charts for Compressible Flow,” NASA, No. 1135, (1953).
    Ben-Dor, G., “Shock Wave Reflection Phenomena,” Springer-Verlag, New York, (1991).
    Ben-Dor, G. and Takayama, K., “The Phenomena of Shock Wave Reflection-A Review of Unsolved Problems and Future Research needs,” Shock Waves, Vol. 2, 211-223, (1992).
    Ben-Dor, G., “Reconsideration of Oblique Shock Wave Reflections in Steady Flows. Part 1. Experimental Investigation,” J. Fluid Mech., Vol. 301, 19-35, (1995).
    Colella, P. and Henderson, L. F., J. Fluid Mech., Vol. 213, pp. 71-94, (1990.)
    Eggink, H., “Uber Verdichtungatosse Bei Abgeloster Stromung ,” Zentralstelle Wissenschaftliche Berichte (Z.W.B.) 1850, Aachen, (1943).
    Griffith, W.C., “Shock Waves,” J. Fluid Mech., Vol. 106, 81-101, (1981).
    Henderson, L. F., “On the Confluence of Three Shock Waves in a Perfect Gas, ” Aero. Quart., 15, 181-197, (1964).
    Henderson, L. F. and Lozzi, A., “Further Experiments on Transition to Mach Reflextion,” J. Fluid Mech., Vol. 94, 541-560, (1979).
    Hornung, H., “Regular and Mach Reflection of Shock Waves,” Ann. Rev. Fluid Mech, 18, 33-58, (1986).
    Henderson, L. F., “Regions and Boundaries for Diffracting Shock Wave Systems,” Z. Angew, Vol 67, 1-14, (1987).
    Kudryavtsev, A.N., Ivanov, M.S., Vandromme, D., Fomin, V.M., Hadjadj, “Transition between Regular and Mach Reflection of Shock Waves: New Numerical and Experimental Results” Shock Waves, Vol. 11, 199-207, (2001).
    Kudryavtsev, A.N., Khotyanovsky, D.V., Ivanov, M.S., Hadjadj, A., Vandromme, D., “Numerical Investigations of Transition between Regular and Mach Reflections Caused by Free-Stream Disturbances” Shock Waves, 157-165, (2002).
    Liu, J.J., “Sound Wave Structures Downstream of Pseudo-Steady Weak and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, 309-332, (1996).
    Li, H., Chpoun, A. and Ben-Dor, G., “Analytical and Experimental Investigations of the Reflection of Asymmetric Shock Waves in Steady Flows,” J. Fluid Mech., Vol. 399, 25-43, (1999).
    Liu, J.J., “A one-dimensional stream-tube interpretation of Liu’s revised three-shock theory for pseudo-steady Mach reflections,” The 23 rd International symposium on shock Wave, Fort Worth, Texas. USA, (2001).
    Liu, J.J., Chuang, C.C., Lee, Y.C., “On Multiply Possible Solutions of the Confluence of Three Shock Waves in Steady Perfect Gas,” The 26th National Conference on Theoretical and Applied Mechanics, Hu-Wei, Taiwan (2002).
    Liu, J.J., “A Map of Multiplicity of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections in Diatomic Gases” The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, 120-127, (2003a).
    Liu, J.J., “Multiply Possible Three-Shock Theoretical Solutions of Steady Mach Reflections in Triatomic Perfect-Gases” The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, 105-111, (2003b).
    Liu, J.J., Shih, M.C., Yang, Y.Q., Tseng K.Y., “Preliminary Regimes of Multiplicity of Three-Shock Theoretical Solutions of Steady Mach Reflections in Perfect Triatomic Gases,” The 20th National Conference on Mechanical Engineering, 427-434, (2003c).
    Liu, J.J. and Shih, M.C., “Preliminary Regimes of Multiplicity of Three-Shock Theoretical Solutions of Steady Mach Reflections in Perfect Diatomic Gases,” The 27th National Conference on Theoretical and Applied Mechanics, 719-727, (2003d).
    Liu, J.J., “Theoretical Expressions for Limiting Conditions Separating Different Regimes of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections,” The 28th National Conference on Theoretical and Applied Mechanics, (2004).
    Liu, J.J., “Theoretical expressions for limiting conditions separating different regimes of perfect-gas three-shock theoretical solutions of steady Mach reflections,” The 29th National Conference on Theoretical and Applied Mechanics, pp. B025-1 - B025-8, (2005a).
    Liu, J.J., Lu, C.P. and Chou, C.A., “The existence of double roots in the three-shock theoretical solutions of steady Mach reflections in perfect diatomic gases,” 2005航太學會/民航學會聯合學術研討會, 高雄, (2005b).
    Liu, J.J., Lin, C.C., “ , , -root Characteristics of Multiply Possible Theoretical Solutions of Steady Mach Reflections in Perfect Diatomic and Triatomic Gases,” The 3th Cross-straits Workshop on Shock Wave/Vortex Interaction, (2006a).
    Liu, J.J., Liu, C.Y., Lu, C.P., “The Jump in Double Roots of the Three-Shock Theoretical Solutions of Steady Mach Reflections in Perfect Triatomic Gases,” 2006中國航太學會/中華民航學會聯合學術研討會, (2006b).
    Liu, J.J., Lin, C.C., “The Jump in Double Roots of the Three-Shock Theoretical Solutions of Steady Mach Reflections in Perfect Diatomic Gases,” 中華民國力學學會第三十屆全國力學會議, (2006c).
    Mach, E., “Uber einige mechanische Wirkungen des electrischen Funkens, ” Akademie der Wissenschaften Wien, Vol. 77, No. II, 819-838, (1878).
    Mathematica,Wolfram Research Asia Ltd. Oak Ochanomizu Building 5F 3-8 Kanda Ogawa-machi Chiyoda-ku, Tokyo 101-0052 JAPAN, (1999).
    Neumann, J. von, “Oblique Reflection of Shocks,” Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC. (1943).
    Neumann, J. von, “On Refraction, Interaction and Reflection of Shock Waves,” NAVORD Rep. 203-45, Navy Dept., Bureau of Ordinance, Washington, DC. (1945).
    Wuest, W., “Zur Theorie des gegabelten Verdichtungatosse,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 28, No. 3, 73-80, (1948).
    Wecken, F., “Grenzlagen gegabelten Verdichtungatosse,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 29, No. 5, 147-155, (1949).
    Zakharian AR, Brio M, Hunter JK, Webb GM ”The von Neumann paradox in weak shock reflection,” J. Fluid Mech., Vol. 422, pp. 193-205, (2000).
    石祐菘,「三原子分子理想氣體穩態馬赫反射三震波理論多重解分析」,國立成功大學工程科學系碩士論文,台南 (2004)。
    李玉成,「多原子分子氣體穩態三震波匯流現象之多重解理論分析:SF6」,國立成功大學工程科學系碩士論文,台南 (2003)。
    莊俊忠,「馬赫反射現象之理論探討」,國立成功大學工程科學系碩士論文,台南 (2002)。

    下載圖示 校內:立即公開
    校外:2007-02-14公開
    QR CODE